Publications by authors named "Susan Strome"

Gregor Mendel developed the principles of segregation and independent assortment in the mid-1800s based on his detailed analysis of several traits in pea plants. Those principles, now called Mendel's laws, in fact, explain the behavior of genes and alleles during meiosis and are now understood to underlie "Mendelian inheritance" of a wide range of traits and diseases across organisms. When asked to give examples of inheritance that do NOT follow Mendel's laws, in other words, examples of non-Mendelian inheritance, students sometimes list incomplete dominance, codominance, multiple alleles, sex-linked traits, and multigene traits and cite as their sources the Khan Academy, Wikipedia, and other online sites.

View Article and Find Full Text PDF

The transmission of chromatin states from parent cells to daughter cells preserves cell-specific transcriptional states and thus cell identity through cell division. The mechanism that underpins this process is not fully understood. The role that chromatin states serve in transmitting gene expression information across generations via sperm and oocytes is even less understood.

View Article and Find Full Text PDF

Maternally synthesized products play critical roles in the development of offspring. A premier example is the H3K36 methyltransferase MES-4, which is essential for germline survival and development in offspring. How maternal MES-4 protects the germline is not well understood, but its role in H3K36 methylation hinted that it may regulate gene expression in primordial germ cells (PGCs).

View Article and Find Full Text PDF

The mammalian pocket protein family, which includes the Retinoblastoma protein (pRb) and Rb-like pocket proteins p107 and p130, regulates entry into and exit from the cell cycle by repressing cell cycle gene expression. Although pRb plays a dominant role in mammalian systems, p107 and p130 are the ancestral pocket proteins. The Rb-like pocket proteins interact with the highly conserved 5-subunit MuvB complex and an E2F-DP transcription factor heterodimer, forming the DREAM (for Dp, Rb-like, E2F, and MuvB) complex.

View Article and Find Full Text PDF

Transcriptomic approaches have provided a growing set of powerful tools with which to study genome-wide patterns of gene expression. Rapidly evolving technologies enable analysis of transcript abundance data from particular tissues and even single cells. This Primer discusses methods that can be used to collect and profile RNAs from specific tissues or cells, process and analyze high-throughput RNA-sequencing data, and define sets of genes that accurately represent a category, such as tissue-enriched or tissue-specific gene expression.

View Article and Find Full Text PDF
Article Synopsis
  • Chromatin regulators, such as SET-2, play a crucial role in maintaining germline identity, with their absence resulting in transgenerational sterility.
  • Researchers found that misexpression of certain genes begins in early generations, a process called priming, and worsens in later generations, indicating a progressive loss of fertility.
  • Key factors like increased levels of specific transcription factors and signaling pathways have been identified as contributors to this loss, suggesting that disturbances in chromatin regulation can lead to lasting effects on gene expression and cell identity across generations.
View Article and Find Full Text PDF
Article Synopsis
  • * While most animal species possess certain essential genes related to the MuvB complex, bilaterian nematodes lost these genes long ago, yet some conserved protein interactions remain, suggesting evolutionary links.
  • * Experiments show that the Myb protein from distant relatives can still interact with nematodes' LIN9 and LIN52 proteins, potentially activating gene expression similarly to what happens in other animals, hinting at an alternative regulatory pathway in nematodes.
View Article and Find Full Text PDF

Repression of germline-promoting genes in somatic cells is critical for somatic development and function. To study how germline genes are repressed in somatic tissues, we analyzed key histone modifications in three synMuv B mutants, , , and -all of which display ectopic expression of germline genes in the soma. LIN-35 and LIN-37 are members of the conserved DREAM complex.

View Article and Find Full Text PDF

Paternal epigenetic inheritance is gaining attention for its growing medical relevance. However, the form in which paternal epigenetic information is transmitted to offspring and how it influences offspring development remain poorly understood. Here we show that in C.

View Article and Find Full Text PDF

Paternal contributions to epigenetic inheritance are not well understood. Paternal contributions via marked nucleosomes are particularly understudied, in part because sperm in some organisms replace the majority of nucleosome packaging with protamine packaging. Here we report that in Caenorhabditis elegans sperm, the genome is packaged in nucleosomes and carries a histone-based epigenetic memory of genes expressed during spermatogenesis, which unexpectedly include genes well known for their expression during oogenesis.

View Article and Find Full Text PDF

Epigenetic information contributes to proper gene expression and development, and can be transmitted not only through mitotic divisions but also from parents to progeny. We investigated the roles in epigenetic inheritance of MES-4 and MET-1, the two enzymes that methylate H3K36 (histone H3 Lys 36). Mass spectrometry analysis confirmed immunostaining results showing that both MES-4 and MET-1 catalyze H3K36me3.

View Article and Find Full Text PDF

The DREAM (Dp/Retinoblastoma(Rb)-like/E2F/MuvB) transcriptional repressor complex acts as a gatekeeper of the mammalian cell cycle by establishing and maintaining cellular quiescence. How DREAM's three functional components, the E2F-DP heterodimer, the Rb-like pocket protein, and the MuvB subcomplex, form and function at target gene promoters remains unknown. The current model invokes that the pocket protein links E2F-DP and MuvB and is essential for gene repression.

View Article and Find Full Text PDF

The germ cells of multicellular organisms protect their developmental potential through specialized mechanisms. A shared feature of germ cells from worms to humans is the presence of nonmembrane-bound, ribonucleoprotein organelles called germ granules. Depletion of germ granules in (, P granules) leads to sterility and, in some germlines, expression of the neuronal transgene :: and the muscle myosin MYO-3 Thus, P granules are hypothesized to maintain germ cell totipotency by preventing somatic development, although the mechanism by which P granules carry out this function is unknown.

View Article and Find Full Text PDF

Exposure of mother worms to mild osmotic stress induces gene expression changes in offspring that protect them from strong osmotic stress. Inheritance of protection is now shown to depend on altered insulin-like signalling in the maternal germline, which confers protection through increased expression of zygotic gpdh-2, a rate-limiting enzyme in glycerol biosynthesis.

View Article and Find Full Text PDF

The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing.

View Article and Find Full Text PDF

The MuvB complex recruits transcription factors to activate or repress genes with cell cycle-dependent expression patterns. MuvB contains the DNA-binding protein LIN54, which directs the complex to promoter cell cycle genes homology region (CHR) elements. Here we characterize the DNA-binding properties of LIN54 and describe the structural basis for recognition of a CHR sequence.

View Article and Find Full Text PDF

The germ lineage is considered to be immortal. In the quest to extend lifespan, a possible strategy is to drive germ-line traits in somatic cells, to try to confer some of the germ lineage's immortality on the somatic body. Notably, a study in Caenorhabditis elegans suggested that expression of germ-line genes in the somatic cells of long-lived daf-2 mutants confers some of daf-2's long lifespan.

View Article and Find Full Text PDF

Before the first zygotic division, the nuclear envelopes of the maternal and paternal pronuclei disassemble, allowing both sets of chromosomes to be incorporated into a single nucleus in daughter cells after mitosis. We found that in Caenorhabditis elegans, partial inactivation of the polo-like kinase PLK-1 causes the formation of two nuclei, containing either the maternal or paternal chromosomes, in each daughter cell. These two nuclei gave rise to paired nuclei in all subsequent cell divisions.

View Article and Find Full Text PDF

Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied 'germ plasm', inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts.

View Article and Find Full Text PDF

The DREAM (DP, Retinoblastoma [Rb]-like, E2F, and MuvB) complex controls cellular quiescence by repressing cell cycle genes, but its mechanism of action is poorly understood. Here we show that Caenorhabditis elegans DREAM targets have an unusual pattern of high gene body HTZ-1/H2A.Z.

View Article and Find Full Text PDF

Formation of heterochromatin serves a critical role in organizing the genome and regulating gene expression. In most organisms, heterochromatin flanks centromeres and telomeres. To identify heterochromatic regions in the heavily studied model C.

View Article and Find Full Text PDF

For proper development, cells must retain patterns of gene expression and repression through cell division. Repression via methylation of histone H3 on Lys27 (H3K27me) by Polycomb repressive complex 2 (PRC2) is conserved, but its transmission is not well understood. Our studies suggest that PRC2 represses the X chromosomes in Caenorhabditis elegans germ cells, and this repression is transmitted to embryos by both sperm and oocytes.

View Article and Find Full Text PDF

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionp8dtksbqrnvubbs4g8kuukp6ajl8fe92): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once