2-Hydroxypropyl-β-cyclodextrin (HP-β-CD) is an experimental therapy for Niemann-Pick disease type C (NPC) that reduced neuronal cholesterol and ganglioside storage, reduced Purkinje cell death, and increased lifespan in npc1-/- mice and NPC1 cats. In this study, tissue distribution was investigated in normal cats that received a single 120-mg dose of [ C]-HP-β-CD (approximately 200 μCi/cat) via the cerebellomedullary cistern (CBMC) and lumbar cistern. One cat was euthanized at each of various time points up to 24 hours postdose for subsequent processing and quantitative whole-body autoradiographic analysis.
View Article and Find Full Text PDFNiemann-Pick type C1 (NPC) disease is a lysosomal storage disease caused by mutations in the NPC1 gene, leading to an increase in unesterified cholesterol and several sphingolipids, and resulting in hepatic disease and progressive neurological disease. We show that subcutaneous administration of the pharmaceutical excipient 2-hydroxypropyl-β-cyclodextrin (HPβCD) to cats with NPC disease ameliorated hepatic disease, but doses sufficient to reduce neurological disease resulted in pulmonary toxicity. However, direct administration of HPβCD into the cisterna magna of presymptomatic cats with NPC disease prevented the onset of cerebellar dysfunction for greater than a year and resulted in a reduction in Purkinje cell loss and near-normal concentrations of cholesterol and sphingolipids.
View Article and Find Full Text PDFPurpose: To examine whether a conventional bioequivalence approach is sufficient to ensure the therapeutic equivalence of liposomal products, the pharmacokinetics, efficacy and toxicity of different formulation variants of the marketed Doxil(/Caelyx product, pegylated liposomal doxorubicin (PLD), were evaluated in several preclinical models.
Methods: Six different variants of the marketed PLD formulation were prepared by incorporating minor changes in the composition and liposome size of the original formulation. The pharmacokinetics of 5 formulations were evaluated in albino mice following i.