Publications by authors named "Susan Shinton"

Article Synopsis
  • - Loss-of-function studies reveal that T cell factor-1 (TCF1) is crucial for T cell development in the thymus, and its expression is regulated by E box DNA binding proteins independently of Notch signaling.
  • - Systematic analysis of five E protein binding elements (EPE1-5) shows that EPE3 is vital for αβ T cell development, while EPE1, 3, and 5 are important for γδ T cell maturation and fate decisions.
  • - The balanced expression of TCF1, influenced by specific EPEs, is essential for generating the appropriate number of T cells in the thymus.
View Article and Find Full Text PDF

In vivo studies of tumor behavior are a staple of cancer research; however, the use of mice presents significant challenges in cost and time. Here, we present larval zebrafish as a transplant model that has numerous advantages over murine models, including ease of handling, low expense, and short experimental duration. Moreover, the absence of an adaptive immune system during larval stages obviates the need to generate and use immunodeficient strains.

View Article and Find Full Text PDF

T cell receptor (TCR) signaling regulates important developmental transitions, partly through induction of the E protein antagonist, Id3. Although normal γδ T cell development depends on Id3, Id3 deficiency produces different phenotypes in distinct γδ T cell subsets. Here, we show that Id3 deficiency impairs development of the Vγ3 subset, while markedly enhancing development of NKγδT cells expressing the invariant Vγ1Vδ6.

View Article and Find Full Text PDF

Human old aged unmutated chronic lymphocytic leukemia U-CLL are the TCL1ZAP70CD5 B cells. Since CD5 makes the BCR signaling tolerance, ZAP70 increased in U-CLL not only TCL1 alone. In mice, TCL1 (TCL1A) is the negative from neonate to old aged, as TC.

View Article and Find Full Text PDF

Newborns require early generation of effective innate immunity as a primary physiological mechanism for survival. The neonatal Lin28Let7 developmental pathway allows increased generation of Th2-type cells and B1a (B-1 B) cells compared to adult cells and long-term maintenance of these initially generated innate cells. For initial B1a cell growth from the neonatal to adult stage, Th2-type IL-5 production from ILC2s and NKT2 cells is important to increase B1a cells.

View Article and Find Full Text PDF

Newborn screening for severe combined immunodeficiency (SCID) has not only accelerated diagnosis and improved treatment for affected infants, but also led to identification of novel genes required for human T cell development. A male proband had SCID newborn screening showing very low T cell receptor excision circles (TRECs), a biomarker for thymic output of nascent T cells. He had persistent profound T lymphopenia, but normal numbers of B and natural killer (NK) cells.

View Article and Find Full Text PDF

The Lin28bLet7 axis in fetal/neonatal development plays a role in promoting CD5 B1a cell generation as a B-1 B cell developmental outcome. Here we identify the Let7 target, Arid3a, as a crucial molecular effector of the B-1 cell developmental program. Arid3a expression is increased at pro-B cell stage and markedly increased at pre-B and immature B cell stages in the fetal/neonatal liver B-1 development relative to that in the Lin28bLet7 adult bone marrow (BM) B-2 cell development.

View Article and Find Full Text PDF

A complete chart of cis-regulatory elements and their dynamic activity is necessary to understand the transcriptional basis of differentiation and function of an organ system. We generated matched epigenome and transcriptome measurements in 86 primary cell types that span the mouse immune system and its differentiation cascades. This breadth of data enable variance components analysis that suggests that genes fall into two distinct classes, controlled by either enhancer- or promoter-driven logic, and multiple regression that connects genes to the enhancers that regulate them.

View Article and Find Full Text PDF

In mice, fetal/neonatal B-1 cell development generates murine CD5 B cells (B1a) with autoreactivity. We analyzed B1a cells at the neonatal stage in a V11/D/J knock-in mouse line (V11t) that generates an autoreactive antiphosphatidylcholine BCR. Our study revealed that antiphosphatidylcholine B1a cells develop in liver, mature in spleen, and distribute in intestine/colon, mesenteric lymph node (mLN), and body cavity as the outcome of B-1 cell development before B-2 cell development.

View Article and Find Full Text PDF

Although B cell development requires expression of the B cell antigen receptor (BCR), it remains unclear whether engagement of self-antigen provides a positive impact for most B cells. Here, we show that BCR engagement by self-ligand during development in vivo results in up-regulation of the Nod-like receptor member Nod1, which recognizes the products of intestinal commensal bacteria. In anti-thymocyte/Thy-1 autoreactive BCR knock-in mice lacking self-Thy-1 ligand, immunoglobulin light chain editing occurred, generating B cells with up-regulated Nod1, including follicular and marginal zone B cells with natural autoreactivity.

View Article and Find Full Text PDF
Article Synopsis
  • CD79a and CD79b proteins are key components in the B cell antigen receptor complex, crucial for B cell development in zebrafish.
  • Researchers created CD79 transgenic zebrafish lines to trace B cell development stages, discovering simultaneous expression of both immunoglobulin heavy (IgH) and light (IgL) chains, without the typical pre-B cell stage seen in mammals.
  • The study highlights that while the mechanism of B cell development in zebrafish differs from that in mammals, CD79 still plays an essential and conserved role in the differentiation process as B cells begin secreting immunoglobulins.
View Article and Find Full Text PDF

In mice, generation of autoreactive CD5 B cells occurs as a consequence of BCR signaling induced by (self)-ligand exposure from fetal/neonatal B-1 B cell development. A fraction of these cells self-renew and persist as a minor B1 B cell subset throughout life. Here, we show that transfer of early generated B1 B cells from Eμ-TCL1 transgenic mice resulted in chronic lymphocytic leukemia (CLL) with a biased repertoire, including stereotyped BCRs.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic screens are used to find important genes related to immune cell development, using zebrafish as an effective model due to their genetic similarities to humans.
  • A transposon system was employed to create mutations in the zebrafish genome, allowing researchers to tag and identify cells expressing disrupted genes, leading to the discovery of 12 lines with green fluorescent protein (GFP) expressing hematopoietic tissues.
  • Further analysis revealed specific gene disruptions that impede T cell development, with two genes, agtpbp1 and eps15L1, identified as crucial for proper T cell functioning.
View Article and Find Full Text PDF
Article Synopsis
  • FACS analysis shows that pro-B cells from fetal liver and adult bone marrow have distinct outcomes, with fetal cells generating fewer IgD(high) B cells and more CD5(+) cells compared to adult cells that primarily produce IgD(high) B cells with fewer CD5(+) expressions.
  • A proposed model suggests a developmental switch in B cell production, akin to the switch from fetal to adult red blood cell production, influenced by differences in mRNA and microRNA expression levels such as Lin28b and Let-7 family members.
  • The study highlights Arid3a as a crucial transcription factor for fetal-type B cell development and suggests that the Lin28b-driven pathway may increase the presence of CD5(+) B cells
View Article and Find Full Text PDF

B cells generated early during fetal/neonatal B-1 development in mice include autoreactive cells with detectable CD5 upregulation induced by B cell receptor (BCR) signaling (B1a cells). A fraction of B1a cells are maintained by self-renewal for life, with the potential risk of dysregulated growth and progression to chronic lymphocytic leukemia (CLL)/lymphoma during aging. In studies using the Eμ-hTCL1 transgenic mouse system, it became clear that this B1a subset has a higher potential than other B cell subsets for progression to CLL.

View Article and Find Full Text PDF

Mouse B cell precursors from fetal liver and adult bone marrow (BM) generate distinctive B cell progeny when transplanted into immunodeficient recipients, supporting a two-pathway model for B lymphopoiesis, fetal "B-1" and adult "B-2." Recently, Lin28b was shown to be important for the switch between fetal and adult pathways; however, neither the mechanism of Lin28b action nor the importance of B cell antigen receptor (BCR) signaling in this process was addressed. Here, we report key advances in our understanding of the regulation of B-1/B-2 development.

View Article and Find Full Text PDF

Expression of a germline VH3609/D/JH2 IgH in mice results in the generation of B1 B cells with anti-thymocyte/Thy-1 glycoprotein autoreactivity by coexpression of Vk21-5/Jk2 L chain leading to production of serum IgM natural autoantibody. In these same mice, the marginal zone (MZ) B cell subset in spleen shows biased usage of a set of Ig L chains different from B1 B cells, with 30% having an identical Vk19-17/Jk1 L chain rearrangement. This VH3609/Vk19-17 IgM is reactive with intestinal goblet cell granules, binding to the intact large polymatrix form of mucin 2 glycoprotein secreted by goblet cells.

View Article and Find Full Text PDF

The differentiation of αβT cells from thymic precursors is a complex process essential for adaptive immunity. Here we exploited the breadth of expression data sets from the Immunological Genome Project to analyze how the differentiation of thymic precursors gives rise to mature T cell transcriptomes. We found that early T cell commitment was driven by unexpectedly gradual changes.

View Article and Find Full Text PDF

The differentiation of hematopoietic stem cells into cells of the immune system has been studied extensively in mammals, but the transcriptional circuitry that controls it is still only partially understood. Here, the Immunological Genome Project gene-expression profiles across mouse immune lineages allowed us to systematically analyze these circuits. To analyze this data set we developed Ontogenet, an algorithm for reconstructing lineage-specific regulation from gene-expression profiles across lineages.

View Article and Find Full Text PDF

Large homozygous deletions of 9p21 that inactivate CDKN2A, ARF, and MTAP are common in a wide variety of human cancers. The role for CDKN2A and ARF in tumorigenesis is well established, but whether MTAP loss directly affects tumorigenesis is unclear. MTAP encodes the enzyme methylthioadenosine phosphorylase, a key enzyme in the methionine salvage pathway.

View Article and Find Full Text PDF

Allelic exclusion of Ig gene expression is necessary to limit the number of functional receptors to one per B cell. The mechanism underlying allelic exclusion is unknown. Because germline transcription of Ig and TCR loci is tightly correlated with rearrangement, we created two novel knock-in mice that report transcriptional activity of the Jkappa germline promoters in the Igkappa locus.

View Article and Find Full Text PDF

B-1 B-cells constitute a distinctive population of cells that are enriched for self-reactive B cell receptors (BCRs). These BCRs are encoded by a restricted set of heavy and light chains, including heavy chains that lack nontemplated nucleotide additions at the V-D and D-J joining regions. One prototype natural autoantibody produced by B-1 B cells binds to a cryptic determinant exposed on senescent red blood cells that includes the phosphatidylcholine (PtC) moiety.

View Article and Find Full Text PDF

The alphabeta and gammadelta T lineages are thought to arise from a common precursor; however, the regulation of separation and development of these lineages is not fully understood. We report here that development of alphabeta and gammadelta precursors was differentially affected by elimination of ribosomal protein L22 (Rpl22), which is ubiquitously expressed but not essential for translation. Rpl22 deficiency selectively arrested development of alphabeta-lineage T cells at the beta-selection checkpoint by inducing their death.

View Article and Find Full Text PDF

We describe here three CD19- B cell precursor populations in mouse bone marrow identified using 12-color flow cytometry. Cell transfer experiments indicate lineage potentials consistent with multilineage progenitor (MLP), common lymphoid progenitor (CLP), and B lineage-restricted pre-pro-B (Fr. A), respectively.

View Article and Find Full Text PDF