Diabetic foot, leg ulcers and decubitus ulcers affect millions of individuals worldwide leading to poor quality of life, pain and in several cases to limb amputations. Despite the global dimension of this clinical problem, limited progress has been made in developing more efficacious wound dressings, the design of which currently focusses on wound protection and control of its exudate volume. The present in vitro study systematically analysed seven types of clinically-available wound dressings made of different biomaterial composition and engineering.
View Article and Find Full Text PDFProgressive liver disease and dysfunction cause toxic metabolites including ammonia and unconjugated bilirubin to accumulate in plasma. As the population ages alternatives to liver transplantation become increasingly important. One approach for use as a bridge to transplant or recovery is the use of bioartificial liver systems (BALS) containing primary or immortalised hepatocytes as ex-vivo replacements or supports for endogenous liver function.
View Article and Find Full Text PDFObjective: Targeting bacterial translocation in cirrhosis is limited to antibiotics with risk of antimicrobial resistance. This study explored the therapeutic potential of a non-absorbable, gut-restricted, engineered carbon bead adsorbent, Yaq-001 in models of cirrhosis and acute-on-chronic liver failure (ACLF) and, its safety and tolerability in a clinical trial in cirrhosis.
Design: Performance of Yaq-001 was evaluated .
ACS Appl Mater Interfaces
February 2024
In the era of the internet of things, there exists a pressing need for technologies that meet the stringent demands of wearable, self-powered, and seamlessly integrated devices. Current approaches to developing MXene-based electrochemical sensors involve either rigid or opaque components, limiting their use in niche applications. This study investigates the potential of pristine TiCT electrodes for flexible and transparent electrochemical sensing, achieved through an exploration of how material characteristics (flake size, flake orientation, film geometry, and uniformity) impact the electrochemical activity of the outer sphere redox probe ruthenium hexamine using cyclic voltammetry.
View Article and Find Full Text PDFPosterior capsule opacification (PCO) is the most common complication arising from the corrective surgery used to treat cataract patients. PCO arises when lens epithelial cells (LEC) residing in the capsular bag post-surgery undergo hyper-proliferation and transdifferentiation into myofibroblasts, migrating from the posterior capsule over the visual axis of the newly implanted intraocular lens (IOL). The developmental pathways underlying PCO are yet to be fully understood and the current literature is contradictory regarding the impact of the recognised risk factors of PCO.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2021
Bioartificial Liver (BAL) devices are extracorporeal systems designed to support or recover hepatic function in patients with liver failure. The design of an effective BAL remains an open challenge since it requires a complex co-optimisation of cell colonisation, biomaterial scaffold and BAL fluid dynamics. Building on previous evidence of suitability as a blood perfusion device for detoxification, the current study investigated the use of RGD-containing p(HEMA)-alginate cryogels as BAL scaffolds.
View Article and Find Full Text PDFStrategies involving the inclusion of cell-instructive chemical and topographical cues to smart biomaterials in combination with a suitable physical stimulus may be beneficial to enhance nerve-regeneration rate. In this regard, we investigated the surface functionalization of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)-based electroconductive electrospun nanofibers coupled with externally applied electrical stimulus for accelerated neuronal growth potential. In addition, the voltage-dependent conductive mechanism of the nanofibers was studied in depth to interlink intrinsic conductive properties with electrically stimulated neuronal expressions.
View Article and Find Full Text PDFThe effective control of microbial and metabolically derived biological toxins which negatively impact physical health remains a key challenge for the 21st century. 2-Dimensional graphene and MXene nanomaterials are relatively new additions to the field of biomedical materials with superior external surface areas suited to adsorptive remediation of biological toxins. However, relatively little is known about their physiological interactions with biological systems and, to date, no comparative biological studies have been done.
View Article and Find Full Text PDFOsteo-odonto-keratoprostheses, incorporating dental laminate material as an anchoring skirt around a central poly(methyl methacrylate) (PMMA) optic, have been used to replace the cornea for many years. However, there are many intricacies associated with the use of autologous dental laminate material, surgical complexity and skirt erosion. Tissue engineering approaches to bone replacement may offer suitable alternatives in osteo-odonto-keratoprosthesis (OOKP) surgery.
View Article and Find Full Text PDFA fixed combination of bimatoprost/timolol eye drop solution is used to manage the elevated intra-ocular pressure in glaucoma patients, including individuals whose condition is poorly controlled by monotherapy. Eye drop solutions are generally given in high dose, due to poor ocular bioavailability. The high ocular dose of bimatoprost and timolol lead to hyperaemia and systemic cardiac side effects respectively.
View Article and Find Full Text PDFThe optical and swelling properties of gatifloxacin-loaded contact lens decrease owing to the precipitation of gatifloxacin (on hydration) in the matrix structure of the contact lens. This paper focuses on the use of Pluronic F68 both inside and outside (in the packaging solution) the contact lens to form micelles to dissolve the gatifloxacin precipitates and not limited to sustain the release of gatifloxacin. The aim of this study was to screen the critical variables affecting the optical and swelling properties of gatifloxacin-loaded contact lens.
View Article and Find Full Text PDFThe wearable artificial kidney can deliver continuous ambulatory dialysis for more than 3 million patients with end-stage renal disease. However, the efficient removal of urea is a key challenge in miniaturizing the device and making it light and small enough for practical use. Here, we show that two-dimensional titanium carbide (MXene) with the composition of TiCT , where T represents surface termination groups such as -OH, -O-, and -F, can adsorb urea, reaching 99% removal efficiency from aqueous solution and 94% from dialysate at the initial urea concentration of 30 mg/dL, with the maximum urea adsorption capacity of 10.
View Article and Find Full Text PDFIn the present study, a conducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) along with a biodegradable polymer poly(ε-caprolactone) (PCL) was used to prepare an electrically conductive, biocompatible, bioactive, and biodegradable nanofibrous scaffold for possible use in neural tissue engineering applications. Core-sheath electrospun nanofibers of PCL as the core and MEH-PPV as the sheath, were surface-functionalized with (3-aminopropyl) triethoxysilane (APTES) and 1,6-hexanediamine to obtain amine-functionalized surface to facilitate cell-biomaterial interactions with the aim of replacing the costly biomolecules such as collagen, fibronectin, laminin, and arginyl-glycyl-aspartic acid (RGD) peptide for surface modification. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the formation of core-sheath morphology of the electrospun nanofibers, whereas Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) revealed successful incorporation of amine functionality after surface functionalization.
View Article and Find Full Text PDFThe purpose of this study was to prepare an electrically conducting poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) based nanofibrous scaffold and to investigate the synergetic effect of nanofibre structure and electrical stimulation on neuronal growth for possible use in nerve repair. Nanofibres were produced by electrospinning of blended MEH-PPV with polycaprolactone (PCL) at a ratio of 20 : 80, 40 : 60, 50 : 50 and 60 : 40 (v/v). A better electrical conductivity was achieved by using core-sheath structured nanofibres of PCL (core) and MEH-PPV (sheath) produced using the coaxial electrospinning technique.
View Article and Find Full Text PDFWhilst various remedial human monoclonal antibodies have been developed to treat the potentially life-threatening systemic complications associated with anthrax infection, an optimal and universally effective administration route has yet to be established. In the later stages of infection when antibody administration by injection is more likely to fail one possible route to improve outcome is via the use of an antibody-bound, adsorbent haemoperfusion device. We report here the development of an adsorbent macroporous polymer column containing immobilised B.
View Article and Find Full Text PDFNanoporous adsorbents are promising materials to augment the efficacy of haemodialysis for the treatment of end stage renal disease where mortality rates remain unacceptably high despite improvements in membrane technology. Complications are linked in part to inefficient removal of protein bound and high molecular weight uraemic toxins including key marker molecules albumin bound indoxyl sulphate (IS) and p-cresyl sulphate (PCS) and large inflammatory cytokines such as IL-6. The following study describes the assessment of a nanoporous activated carbon monolith produced using a novel binder synthesis route for scale up as an in line device to augment haemodialysis through adsorption of these toxins.
View Article and Find Full Text PDFEffective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs.
View Article and Find Full Text PDFIntroduction Indoxyl sulfate (IS) and p cresyl sulfate (PCS) are protein bound toxins which accumulate with chronic kidney disease. Haemodiafiltration (HDF) increases middle molecule clearances and has been suggested to increase IS and PCS clearance. We therefore wished to establish whether higher convective clearances with HDF would reduce IS and PCS concentrations.
View Article and Find Full Text PDFPolymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined.
View Article and Find Full Text PDFAdsorbents designed with porosity which allows the removal of protein bound and high molecular weight uraemic toxins may improve the effectiveness of haemodialysis treatment of chronic kidney disease (CKD). A nanoporous activated carbon monolith prototype designed for direct blood contact was first assessed for its capacity to remove albumin bound marker toxins indoxyl sulphate (IS), p-cresyl sulphate (p-CS) and high molecular weight cytokine interleukin-6 in spiked healthy donor studies. Haemodialysis patient blood samples were then used to measure the presence of these markers in pre- and post-dialysis blood and their removal by adsorbent recirculation of post-dialysis blood samples.
View Article and Find Full Text PDFThe aim of the present study was to develop and investigate nanoporous activated carbon materials for their ability to adsorb inflammatory cytokines directly from blood, for a range of therapeutic applications, including: systemic inflammatory response syndrome (SIRS) related to sepsis, cardio-pulmonary by-pass surgery, or ischemic reperfusion injury. Building on the previously established relationship between the porous structure of beaded polymer-derived activated carbon and its capacity to adsorb inflammatory molecules, we have developed and characterized monolithic porous carbon columns produced from the same polymer precursor matrix as carbon microbeads. The monolithic columns developed were assessed for their ability to adsorb inflammatory molecules from blood in a circulating system.
View Article and Find Full Text PDFBio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out.
View Article and Find Full Text PDFA set of glutaraldehyde (GA) cross-linked poly(vinyl alcohol)/activated carbon (PVA/GA/AC) composites prepared in the form of monolithic rods using a cryogelation technique and studied using adsorption, mercury porosimetry, scanning electron microscopy (SEM), and quantum chemistry methods display porosity similar to that of PVA/GA cryogel at a high GA content (content ratio GA/AC = 1 and GA/PVA = 0.2). GA cross-linked PVA multilayer coverage is an effective barrier for adsorption on AC particles.
View Article and Find Full Text PDF