In this work, an efficient and sensitive electrochemical sensor for the determination of ciprofloxacin (CIP) is reported. The sensor was prepared by using a carbon paste electrode (CPE) modified with a combination of bimetallic copper/cerium-based metal organic framework (Cu/Ce-MOF) and nickel doped zinc oxide nanoparticles (NZP). The modifiers were characterized by Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and elemental mapping analysis (EDS).
View Article and Find Full Text PDFBackground: Major depression disorder (MDD) is a mental disorder that affects millions of people worldwide. This disease has negative impacts on quality of life and psychological-related functions. This is a multifactorial disorder; both genetic background and environmental factors have their role.
View Article and Find Full Text PDFA simple turn on/off fluorescence approach based on dithizone-capped ZnS quantum dots (ZnS@DZ QDs) with the help of lead ions as a fluorescent probe for the quantitative determination of quercetin is reported. The interaction of lead ions with dithizone led to the formation of a rigid structure on the surface of ZnS@DZ QDs and turned on the fluorescence intensity of the QDs. After addition of quercetin to this probe and interaction with lead ions, the fluorescence emission turned off.
View Article and Find Full Text PDFThe present study shows that copper(II) ions can be determined with a new fluorescent probe that is based on the use of CdSe quantum dots capped with deep eutectic solvent (DES-CdSe QDs). The capped QDs were prepared in aqueous phase by a one-step procedure under ambient atmosphere using selenium dioxide as a stable precursor for selenium, and ascorbic acid as non-toxic reducing agent. The deep eutectic solvent is composed of choline chloride and thioglycolic acid and acts as stabilizing and functionalizing agent.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2019
The new ionic liquid capped CdS quantum dots (IL-CdS QDs) as a fluorescent probe was successfully synthesized by a hydrothermal method in a one step process and used for the facile and sensitive determination of florfenicol (FLF) in aqueous media. The new ionic liquid 3-(2-[(5-amino-1,3,4-thiadiazol-2-yl)thio]ethyl)-1-methyl-1H-imidazol-3-ium chloride (IL) was synthesized by introducing 5-amino-1,3,4-thiadiazole-2-thiol as a ligand onto the alkyl chain of the 1-chloroethyl-3-methylimidazolium chloride ILs. This task specific ionic liquid reagent was used for the capping of CdS QDs which played the role of recognition element of FLF.
View Article and Find Full Text PDFIn this study, dispersive liquid-liquid micro-extraction using ionic liquid (IL-DLLME) combined with zero crossing first derivative spectrophotometric method was applied to quantitative determination of triphenylmethane dyes in binary mixtures. The 1-methyl-3-octylimidazolium hexafluorophosphate [OMIM][PF] ionic liquid was used to extract Brilliant Green (BG) and Crystal Violet(CV) dyes from aqueous solutions. The amplitude of the zero crossing first derivative spectra at 670 nm and 532 nm were selected for the determination of BG and CV, respectively.
View Article and Find Full Text PDFBackground: The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2016
The Mn doped ZnS quantum dots (Mn:ZnS QDs) capped with the florfenicol molecularly imprinted polymer (Mn:ZnS QDs@MIP) were prepared via the sol-gel surface imprinting approach using 3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross-linker for the optosensing of the florfenicol. Transmission electron microscopy (TEM), X-ray diffractometer, IR spectroscopy, UV-Vis absorption spectrophotometry, and spectrofluorometry were used to elucidate the formation, morphology, and identification of the products. To illustrate the usefulness of the new imprinted material, the non-imprinted coated Mn:ZnS QDs (Mn:ZnS QDs@NIP) were synthesized without the presence of the florfenicol.
View Article and Find Full Text PDFIn this work, N-methylimidazolium-chloride ionic liquid functionalized silica was prepared and used as an anion-exchange stationary phase for separation of chromium species by high-performance liquid chromatography (HPLC) with UV detection at 200 nm. The Cr(VI) as HCr2O7(-) and chelated Cr(III) with potassium hydrogen phthalate (PHP) as Cr(PHP)2 (-) was retained on the prepared column and separated using a mobile phase composed of 5% methanol in 25 mM phosphate buffer at pH 6.5.
View Article and Find Full Text PDFIn this work, poly(methyl methacrylate) grafted Tragacanth gum modified Fe3O4 magnetic nanoparticles (P(MMA)-g-TG-MNs) were developed for the selective removal of Cr(VI) species from aqueous solutions in the presence of Cr(III). The sorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), a vibrating sample magnetometer (VSM), and thermo-gravimetric analysis (TGA). A screening study on operational variables was performed using a two-level full factorial design.
View Article and Find Full Text PDFIn the present study, a new biosensor based on laccase from Paraconiothyrium variabile was developed for catechol. The purified enzyme entrapped into the Fe3O4/polyaniline/chitosan (Fe3O4/polyaniline (PANI)/chitosan (CS)) biocomposite matrix film without the aid of other cross-linking reagents by a one-step electrodeposition on the surface of carbon paste electrode (CPE). The formed layer of biocomposite was characterized with scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV).
View Article and Find Full Text PDFA novel amperometric biosensor for xanthine was developed based on covalent immobilization of crude xanthine oxidase (XOD) extracted from bovine milk onto a hybrid nanocomposite film via glutaraldehyde. Toward the preparation of the film, a stable colloids solution of core-shell Fe3O4/polyaniline nanoparticles (PANI/Fe3O4 NPs) was dispersed in solution containing chitosan (CHT) and H2PtCl6 and electrodeposited over the surface of a carbon paste electrode (CPE) in one step. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used for characterization of the electrode surface.
View Article and Find Full Text PDFA novel screen-printed carbon electrode modified with quercetin/multi-walled carbon nanotubes was fabricated for determination of Cr(VI) in the presence of excess of Cr(III) without any pretreatment. The method is based on accumulation of the quercetin-Cr(III) complex generated in situ from Cr(VI) at the modified electrode surface in an open circuit followed by differential pulse voltammetry detection. The new method allowed selective determination of Cr(VI) in the presence of Cr(III).
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2013
A new sensitive voltammetric sensor for determination of sulfadiazine is described. The developed sensor is based on carbon paste electrode modified with sulfadiazine imprinted polymer (MIP) as a recognition element. For comparison, a non-imprinted polymer (NIP) modified carbon paste electrode was prepared.
View Article and Find Full Text PDFA molecularly imprinted polymer (MIP) for the selective solid phase extraction (SPE) of florfenicol (FF) was prepared using FF as template and 4-vinyl pyridine (4-VP) as functional monomer. For comparison, non-imprinted polymer (NIP) was synthesized in the absence of FF. The synthesized polymers were characterised by infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetry analysis (TGA) and differential thermal analysis (DTA).
View Article and Find Full Text PDFA sensitive and selective method for the preconcentration and speciation of sub ng L(-1) levels of chromium species in aqueous solutions with high salt contents is described. The developed method is based on temperature-controlled microextraction of chromium species using the 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF(6)]) ionic liquid as an extractant followed by electrothermal atomic absorption spectrometry (ETAAS) determination. The extraction of chromium species from aqueous solution into the fine droplets of [HMIM][PF(6)] was performed with ammonium pyrrolidine dithiocarbamate (APDC) as the chelating agent.
View Article and Find Full Text PDFIn this study, silica-coated magnetic nanoparticles modified with quercetin were synthesized by a sol-gel method. These magnetic nanoparticles were assessed as a new solid phase sorbent for extraction of uranyl ions from aqueous solutions. The crystal and chemical structures and magnetic property of the new sorbent were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectrophotometer (FT-IR), and vibration sample magnetometer (VSM).
View Article and Find Full Text PDFTwo simple and accurate spectrophotometric methods for determination of Rifampicin (RIF) are described. The first method is based on charge transfer (CT) complex formation of the drug with three pi-electron acceptors either 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), 7,7,7,8-Tetracyanoquinodimethane (TCNQ) or 2,3,5,6-Tetrachloro-1,4-benzoquinone (p-chloranil) in acetonitrile. The method is followed spectrophotometrically by measuring the maximum absorbance at 584 nm, 761 nm (680 nm) or 560 nm for DDQ, TCNQ and p-chloranil, respectively.
View Article and Find Full Text PDFCu2+ selective PVC membrane electrode based on new Schiff base 2, 2'-[1,9 nonanediyl bis (nitriloethylidyne)]-bis-(1-naphthol) as a selective carrier was constructed. The electrode exhibited a linear potential response within the activity range of 1.0 x 10(-6) - 5.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2005
Piroxicam was found to be a highly selective carrier for uphill transport of Cu2+ ions through a chloroform liquid membrane. The transport occurs via a counterflow of protons from the receiving phase to the source phase. The effects of several parameters on the transport of Cu2+ ions, such as the carrier concentration, pH of the source phase, composition of the receiving phase, and duration are described.
View Article and Find Full Text PDFA new molecularly imprinted polymer (MIP) was specifically synthesized as a smart material for the recognition of metformin hydrochloride in solid-phase extraction. Particles of this MIP were packed into a stainless-steel tubing (50 mm x 0.8 mm i.
View Article and Find Full Text PDFA method for the extraction and determination of uranyl ion in natural waters using octadecyl bonded silica membrane disks modified with piroxicam and spectrophotometry with arsenazo(III) is proposed. The perconcentration step was studied with regard to experimental parameters such as amount of extractant, type and amount of eluent, pH, flow rates and tolerance limit of diverse ions on the recovery of uranyl ion. The limit of detection of the proposed method is 0.
View Article and Find Full Text PDFThree new electrodes were prepared by incorporating two different charge-transfer complexes and amino crown ether into plasticized PVC membranes. The electrodes showed Nernstian response to triiodide ion over the activity range from 1.0 x 10(-5) to 1.
View Article and Find Full Text PDF