Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated during combustion. Dibenzo[def,p]chrysene (DBC) is a high molecular weight PAH classified as a 2B carcinogen by the International Agency for Research on Cancer. DBC crosses the placenta in exposed mice, causing carcinogenicity in offspring.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated as byproducts of natural and anthropogenic combustion processes. Despite significant public health concern, physiologically based pharmacokinetic (PBPK) modeling efforts for PAHs have so far been limited to naphthalene, plus simpler PK models for pyrene, nitropyrene, and benzo[a]pyrene (B[a]P). The dearth of published models is due in part to the high lipophilicity, low volatility, and myriad metabolic pathways for PAHs, all of which present analytical and experimental challenges.
View Article and Find Full Text PDFA physiologically based pharmacokinetic (PBPK) model was developed for the conazole fungicide triadimefon and its primary metabolite, triadimenol. Rat tissue:blood partition coefficients and metabolic constants were measured in vitro for both compounds. Pharmacokinetic data for parent and metabolite were collected from several tissues after intravenous administration of triadimefon to male Sprague-Dawley rats.
View Article and Find Full Text PDF