Cis-regulatory elements (CREs) are critical in regulating gene expression, and yet understanding of CRE evolution remains challenging. Here, we constructed a comprehensive single-cell atlas of chromatin accessibility in Oryza sativa, integrating data from 103,911 nuclei representing 126 discrete cell states across nine distinct organs. We used comparative genomics to compare cell-type resolved chromatin accessibility between O.
View Article and Find Full Text PDFGene-editing tools such as CRISPR-Cas9 have created unprecedented opportunities for genetic studies in plants and animals. We designed a course-based undergraduate research experience (CURE) to train introductory biology students in the concepts and implementation of gene-editing technology as well as develop their soft skills in data management and scientific communication. We present two versions of the course that can be implemented with twice-weekly meetings over a 5-week period.
View Article and Find Full Text PDFGenomes of all characterized higher eukaryotes harbor examples of transposable element (TE) bursts-the rapid amplification of TE copies throughout a genome. Despite their prevalence, understanding how bursts diversify genomes requires the characterization of actively transposing TEs before insertion sites and structural rearrangements have been obscured by selection acting over evolutionary time. In this study, rice recombinant inbred lines (RILs), generated by crossing a bursting accession and the reference Nipponbare accession, were exploited to characterize the spread of the very active / family through a small population and the resulting impact on genome diversity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2019
Transposable elements (TEs) shape genome evolution through periodic bursts of amplification. In this study prior knowledge of the mPing/Ping/Pong TE family is exploited to track their copy numbers and distribution in genome sequences from 3,000 accessions of domesticated Oryza sativa (rice) and the wild progenitor Oryza rufipogon. We find that mPing bursts are restricted to recent domestication and is likely due to the accumulation of two TE components, Ping16A and Ping16A_Stow, that appear to be critical for mPing hyperactivity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2017
To understand the success strategies of transposable elements (TEs) that attain high copy numbers, we analyzed two pairs of rice () strains, EG4/HEG4 and A119/A123, undergoing decades of rapid amplification (bursts) of the class 2 autonomous element and the nonautonomous miniature inverted repeat transposable element (MITE) Comparative analyses of whole-genome sequences of the two strain pairs validated that each pair has been maintained for decades as inbreds since divergence from their respective last common ancestor. Strains EG4 and HEG4 differ by fewer than 160 SNPs and a total of 264 new insertions. Similarly, strains A119 and A123 exhibited about half as many SNPs (277) as new insertions (518).
View Article and Find Full Text PDFMutator-like transposable elements (MULEs) are widespread across fungal, plant and animal species. Despite their abundance and importance as genetic tools in plants, the transposition mechanism of the MULE superfamily was previously unknown. Discovery of the Muta1 element from Aedes aegypti and its successful transposition in yeast facilitated the characterization of key steps in Muta1 transposition.
View Article and Find Full Text PDFBackground: Transposable element (TE) polymorphisms are important components of population genetic variation. The functional impacts of TEs in gene regulation and generating genetic diversity have been observed in multiple species, but the frequency and magnitude of TE variation is under appreciated. Inexpensive and deep sequencing technology has made it affordable to apply population genetic methods to whole genomes with methods that identify single nucleotide and insertion/deletion polymorphisms.
View Article and Find Full Text PDFBackground: -like transposable elements (MULEs) are widespread with members in fungi, plants, and animals. Most of the research on the MULE superfamily has focused on plant MULEs where they were discovered and where some are extremely active and have significant impact on genome structure. The maize element has been widely used as a tool for both forward and reverse genetic studies because of its high transposition rate and preference for targeting genic regions.
View Article and Find Full Text PDFThe National Academies of Sciences, Engineering, and Medicine organized a convocation in 2015 to explore and elucidate opportunities, barriers, and realities of course-based undergraduate research experiences, known as CUREs, as a potentially integral component of undergraduate science, technology, engineering, and mathematics education. This paper summarizes the convocation and resulting report.
View Article and Find Full Text PDFMeiotic recombination rates can vary widely across genomes, with hotspots of intense activity interspersed among cold regions. In yeast, hotspots tend to occur in promoter regions of genes, whereas in humans and mice, hotspots are largely defined by binding sites of the positive-regulatory domain zinc finger protein 9. To investigate the detailed recombination pattern in a flowering plant, we use shotgun resequencing of a wild population of the monkeyflower Mimulus guttatus to precisely locate over 400,000 boundaries of historic crossovers or gene conversion tracts.
View Article and Find Full Text PDFTransposable elements (TEs) are dynamic components of genomes that often vary in copy number among members of the same species. With the advent of next-generation sequencing TE insertion-site polymorphism can be examined at an unprecedented level of detail when combined with easy-to-use bioinformatics software. Here we report a new tool, RelocaTE, that rapidly identifies specific TE insertions that are either polymorphic or shared between a reference and unassembled next-generation sequencing reads.
View Article and Find Full Text PDFBackground: Class 2 transposable elements (TEs) are the predominant elements in and around plant genes where they generate significant allelic diversity. Using the complete sequences of four grasses, we have performed a novel comparative analysis of class 2 TEs. To ensure consistent comparative analyses, we re-annotated class 2 TEs in Brachypodium distachyon, Oryza sativa (rice), Sorghum bicolor and Zea mays and assigned them to one of the five cut-and-paste superfamilies found in plant genomes (Tc1/mariner, PIF/Harbinger, hAT, Mutator, CACTA).
View Article and Find Full Text PDFLarge lecture classes and standardized laboratory exercises are characteristic of introductory biology courses. Previous research has found that these courses do not adequately convey the process of scientific research and the excitement of discovery. Here we propose a model that provides beginning biology students with an inquiry-based, active learning laboratory experience.
View Article and Find Full Text PDFInsertional mutagenesis of legume genomes such as soybean (Glycine max) should aid in identifying genes responsible for key traits such as nitrogen fixation and seed quality. The relatively low throughput of soybean transformation necessitates the use of a transposon-tagging strategy where a single transformation event will produce many mutations over a number of generations. However, existing transposon-tagging tools being used in legumes are of limited utility because of restricted transposition (Ac/Ds: soybean) or the requirement for tissue culture activation (Tnt1: Medicago truncatula).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2011
Cut-and-paste DNA transposable elements are major components of eukaryotic genomes and are grouped into superfamilies (e.g., hAT, P) based on sequence similarity of the element-encoded transposase.
View Article and Find Full Text PDFMiniature inverted-repeat transposable elements (MITEs) are a special type of Class 2 non-autonomous transposable element (TE) that are abundant in the non-coding regions of the genes of many plant and animal species. The accurate identification of MITEs has been a challenge for existing programs because they lack coding sequences and, as such, evolve very rapidly. Because of their importance to gene and genome evolution, we developed MITE-Hunter, a program pipeline that can identify MITEs as well as other small Class 2 non-autonomous TEs from genomic DNA data sets.
View Article and Find Full Text PDFBackground: PIF/Harbinger is the most recently discovered DNA transposon superfamily and is now known to populate genomes from fungi to plants to animals. Mobilization of superfamily members requires two separate element-encoded proteins (ORF1 and TPase). Members of this superfamily also mobilize Tourist-like miniature inverted repeat transposable elements (MITEs), which are the most abundant transposable elements associated with the genes of plants, especially the cereal grasses.
View Article and Find Full Text PDFMost of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences.
View Article and Find Full Text PDFHigh-copy-number transposable elements comprise the majority of eukaryotic genomes where they are major contributors to gene and genome evolution. However, it remains unclear how a host genome can survive a rapid burst of hundreds or thousands of insertions because such bursts are exceedingly rare in nature and therefore difficult to observe in real time. In a previous study we reported that in a few rice strains the DNA transposon mPing was increasing its copy number by approximately 40 per plant per generation.
View Article and Find Full Text PDFMiniature inverted repeat transposable elements (MITEs) are widespread in eukaryotic genomes, where they can attain high copy numbers despite a lack of coding capacity. However, little is known about how they originate and amplify. We performed a genome-wide screen of functional interactions between Stowaway MITEs and potential transposases in the rice genome and identified a transpositionally active MITE that possesses key properties that enhance transposition.
View Article and Find Full Text PDFGene families compose a large proportion of eukaryotic genomes. The rapidly expanding genomic sequence database provides a good opportunity to study gene family evolution and function. However, most gene family identification programs are restricted to searching protein databases where data are often lagging behind the genomic sequence data.
View Article and Find Full Text PDFAlthough quantitative traits loci (QTL) analysis has been widely performed to isolate agronomically important genes, it has been difficult to obtain molecular markers between individuals with similar phenotypes (assortative mating). Recently, the miniature inverted-repeat transposable element mPing was shown to be active in the japonica strain Gimbozu EG4 where it had accumulated more than 1000 copies. In contrast, most other japonicas, including Nipponbare, have 50 or fewer mPing insertions in their genome.
View Article and Find Full Text PDFThe formation of hybrid zones between nascent species is a widespread phenomenon. The evolutionary consequences of hybridization are influenced by numerous factors, including the action of natural selection on quantitative trait variation. Here we examine how the genetic basis of floral traits of two species of Louisiana Irises affects the extent of quantitative trait variation in their hybrids.
View Article and Find Full Text PDF