Objectives: The study objective was to characterize cochlear implant (CI) pitch perception for pure, complex, and modulated tones for frequencies and fundamental frequencies in the ecologically essential range between 110 and 440 Hz. Stimulus manipulations were used to examine CI users' reliance on stimulation place and rate cues for pitch discrimination.
Design: The study was a within-subjects design with 21 CI users completing pitch discrimination measures using pure, complex, and modulated tones.
A musical interval is the difference in pitch between two sounds. The way that musical intervals are used in melodies relative to the tonal center of a key can strongly affect the emotion conveyed by the melody. The present study examines musical interval identification in people with no known hearing loss and in cochlear implant users.
View Article and Find Full Text PDFConsonant perception is challenging for listeners with hearing loss, and transmission of speech over communication channels further deteriorates the acoustics of consonants. Part of the challenge arises from the short-term low energy spectro-temporal profile of consonants (for example, relative to vowels). We hypothesized that an audibility enhancement approach aimed at boosting the energy of low-level sounds would improve identification of consonants without diminishing vowel identification.
View Article and Find Full Text PDFIn the auditory system, frequency is represented as tonotopic and temporal response properties of the auditory nerve. While these response properties are inextricably linked in normal hearing, cochlear implants can separately excite tonotopic location and temporal synchrony using different electrodes and stimulation rates, respectively. This separation allows for the investigation of the contributions of tonotopic and temporal cues for frequency discrimination.
View Article and Find Full Text PDFMost cochlear implants encode the fundamental frequency of periodic sounds by amplitude modulation of constant-rate pulsatile stimulation. Pitch perception provided by such stimulation strategies is markedly poor. Two experiments are reported here that consider potential advantages of pulse rate compared to modulation frequency for providing stimulation timing cues for pitch.
View Article and Find Full Text PDFCochlear implants are medical devices that have been used to restore hearing to more than half a million people worldwide. Most recipients achieve high levels of speech comprehension through these devices, but speech comprehension in background noise and music appreciation in general are markedly poor compared to normal hearing. A key aspect of hearing that is notably diminished in cochlear implant outcomes is the sense of pitch provided by these devices.
View Article and Find Full Text PDFCochlear implant users hear pitch evoked by stimulation rate, but discrimination diminishes for rates above 300 Hz. This upper limit on rate pitch is surprising given the remarkable and specialized ability of the auditory nerve to respond synchronously to stimulation rates at least as high as 3 kHz and arguably as high as 10 kHz. Sensitivity to stimulation rate as a pitch cue varies widely across cochlear implant users and can be improved with training.
View Article and Find Full Text PDFHearing loss greatly reduces an individual's ability to comprehend speech in the presence of background noise. Over the past decades, numerous signal-processing algorithms have been developed to improve speech reception in these situations for cochlear implant and hearing aid users. One challenge is to reduce background noise while not introducing interaural distortion that would degrade binaural hearing.
View Article and Find Full Text PDF