Transfer RNAs (tRNAs) through their abundance and modification pattern significantly influence protein translation. Here, we present a systematic analysis of the tRNAome of Lactococcus lactis. Using the next-generation sequencing approach, we identified 40 tRNAs which carry 16 different post-transcriptional modifications as revealed by mass spectrometry analysis.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
April 2013
Post-transcriptional chemical covalent modification of adenosine, guanosine, uridine and cytidine occurs frequently in all types of ribonucleic acids (RNAs). In ribosomal RNA (rRNA) and transfer RNA (tRNA) these modifications make important contributions to RNA structure and stability and to the accuracy and efficiency of protein translation. The functional dynamics, synergistic nature and regulatory roles of these posttranscriptional nucleoside modifications within the cell are not well characterized.
View Article and Find Full Text PDFMethylthiotransferases (MTTases) are a closely related family of proteins that perform both radical-S-adenosylmethionine (SAM) mediated sulfur insertion and SAM-dependent methylation to modify nucleic acid or protein targets with a methyl thioether group (-SCH(3)). Members of two of the four known subgroups of MTTases have been characterized, typified by MiaB, which modifies N(6)-isopentenyladenosine (i(6)A) to 2-methylthio-N(6)-isopentenyladenosine (ms(2)i(6)A) in tRNA, and RimO, which modifies a specific aspartate residue in ribosomal protein S12. In this work, we have characterized the two MTTases encoded by Bacillus subtilis 168 and find that, consistent with bioinformatic predictions, ymcB is required for ms(2)i(6)A formation (MiaB activity), and yqeV is required for modification of N(6)-threonylcarbamoyladenosine (t(6)A) to 2-methylthio-N(6)-threonylcarbamoyladenosine (ms(2)t(6)A) in tRNA.
View Article and Find Full Text PDFModification of the cytidine in the first anticodon position of the AUA decoding tRNA(Ile) (tRNA2(Ile)) of bacteria and archaea is essential for this tRNA to read the isoleucine codon AUA and to differentiate between AUA and the methionine codon AUG. To identify the modified cytidine in archaea, we have purified this tRNA species from Haloarcula marismortui, established its codon reading properties, used liquid chromatography-mass spectrometry (LC-MS) to map RNase A and T1 digestion products onto the tRNA, and used LC-MS/MS to sequence the oligonucleotides in RNase A digests. These analyses revealed that the modification of cytidine in the anticodon of tRNA2(Ile) adds 112 mass units to its molecular mass and makes the glycosidic bond unusually labile during mass spectral analyses.
View Article and Find Full Text PDF