Publications by authors named "Susan P Rohrer"

Estrogen Receptor α (ERα) and Estrogen Receptor β (ERβ) are steroid nuclear receptors that transduce estrogen signaling to control diverse physiological processes linked to reproduction, bone remodeling, behavior, immune response and endocrine-related diseases. In order to differentiate between ERα and ERβ mediated effects in vivo, ER subtype selective biomarkers are essential. We utilized ERα knockout (AERKO) and ERβ knockout (BERKO) mouse liver RNA and genome wide profiling to identify novel ERα selective serum biomarker candidates.

View Article and Find Full Text PDF

A series of androstene-3,5-diene derivatives were prepared. Despite lacking the C-3 hydroxyl previously believed necessary for ER activity, some of the analogs retained surprising affinity for ER-beta. For example, diene 4 retained excellent selectivity and potency as an ER-beta agonist and was more selective for ER-beta over the androgen receptor (AR).

View Article and Find Full Text PDF

A series of bridged androstenediol derivatives was prepared. The bridged compounds exhibited reduced ER-beta selectivity relative to uncyclized analogs.

View Article and Find Full Text PDF

A novel class of indole ligands for estrogen receptor alpha have been discovered which exhibit potent affinity and high selectivity. Substitution of the bazedoxifene skeleton to the linker present in the HTS lead 1a provided 22b which was found to be 130-fold alpha-selective and acted as an antagonist of estradiol activity in uterine tissue and MCF-7 cancer cells.

View Article and Find Full Text PDF

Somatostatin inhibits both glucagon and insulin secretion. Glucagon significantly contributes to hyperglycemia in type 2 diabetes. Despite its function in the inhibition of glucagon secretion, somatostatin fails to reduce hyperglycemia in type 2 diabetes, due to a parallel suppression of insulin secretion.

View Article and Find Full Text PDF

A series of 2-9a bridged tetrahydrofluorenone derivatives were prepared which exhibited significant binding affinity for ERbeta and were highly selective.

View Article and Find Full Text PDF

Several tetrahydrofluorenones with a triazole fused across C7-C8 showed high levels of ERbeta-selectivity and were found to be potent ERbeta-agonists. As a class they demonstrate improved oral bioavailability in the rat over a parent class of 7-hydroxy-tetrahydrofluorenones. The most selective agonist displayed 5.

View Article and Find Full Text PDF

A series of 6H-benzo[c]chromen-6-one and 6H-benzo[c]chromene derivatives were prepared, and the affinity and selectivity for ERalpha and ERbeta was measured. Many of the analogs were found to be potent and selective ERbeta agonists. Bis hydroxyl at positions 3 and 8 is essential for activity in a HTRF coactivator recruitment assay.

View Article and Find Full Text PDF

To support in vivo screening efforts for estrogen receptor (ER) subtype selective therapeutic agents, we initiated work to discover surrogate markers (biomarkers) in blood plasma that would change in response to ER subtype-specific action. We used a proteomic approach employing strong anion exchange chromatography (SAX), PAGE, and MS to identify potential plasma markers for selective ER-alpha action. The methodology was used to compare blood from vehicle-treated rats to blood from rats treated with either 17beta-estradiol (an ER-alpha/ER-beta agonist) or compound 1 (17alpha-ethynyl-[3,2-c]pyrazolo-19-nor-4-androstene-17beta-ol, an ER-alpha-selective agonist).

View Article and Find Full Text PDF

A series of 19-substituted androstenediol derivatives was prepared. Some of the novel analogs were surprisingly potent and selective ligands for ER-beta.

View Article and Find Full Text PDF

Estrogen receptor alpha (ERalpha) serine 118 (Ser118) phosphorylation modulates activation function-1 (AF1) function. Correct positioning of helix 12 promotes agonist-dependent recruitment of cyclin-dependent kinase-7 to catalyze this event. In this study we show robust cyclin-dependent kinase-7-independent, AF2 antagonist-induced Ser118 phosphorylation.

View Article and Find Full Text PDF

Two novel side chains which had previously been found to enhance antagonist activity in the dihydrobenzoxathiin SERM series were applied to three existing platforms. The novel side chains did not improve the antagonist activity of the existing platforms.

View Article and Find Full Text PDF

An optimized side chain for dihydrobenzoxathiin SERAMs was discovered and attached to four dihydrobenzoxathiin platforms. The novel SERAMs show exceptional estrogen antagonist activity in uterine tissue and an MCF-7 breast cancer cell assay.

View Article and Find Full Text PDF

Background: Recently a novel tryptophan hydroxylase isoform (TPH2) was identified and shown to be highly expressed in the central nervous system (CNS). Hormonal effects on TPH2 mRNA expression in the rodent dorsal raphe nucleus (DRN) are unknown.

Methods: In situ hybridization histochemistry and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) were used to assess the effects of dexamethasone or estradiol on TPH2 mRNA levels in the DRN of C57/Bl6 mice.

View Article and Find Full Text PDF

Background: Distinct expression patterns of estrogen receptor (ER)-alpha and ER-beta are displayed in the murine central nervous system. ER-beta is the predominant form of the receptor expressed in the murine midbrain dorsal raphe nucleus (DRN). Tryptophan hydroxylase (TPH) is abundantly expressed in the serotonergic neurons of the DRN and is regulated by estrogen in both the monkey and the guinea pig.

View Article and Find Full Text PDF

The discovery, synthesis, and SAR of chromanes as ER alpha subtype selective ligands are described. X-ray studies revealed that the origin of the ER alpha-selectivity resulted from a C-4 trans methyl substitution to the cis-2,3-diphenyl-chromane platform. Selected compounds from this class demonstrated very potent in vivo antagonism of estradiol in an immature rat uterine weight assay, effectively inhibited ovariectomy-induced bone resorption in a 42 days treatment paradigm, and lowered serum cholesterol levels in ovx'd adult rat models.

View Article and Find Full Text PDF

The ring oxygen and sulfur analogs of lasofoxifene, 1a and 1b, were synthesized in an attempt to impart ERalpha selectivity, as found in the closely related dihydrobenzoxathiin compound I, recently discovered in these laboratories. The resulting isochroman and isothiochroman compounds were found to exhibit equipotent binding affinities to the ER isoforms and were less active in the inhibition of estradiol-triggered uterine growth when compared to I and lasofoxifene.

View Article and Find Full Text PDF

Rationale: The decrease in levels of estrogens (ER) that occurs in menopause has been correlated with depressive disorders, probably due to ER direct and/or indirect effects in the brain, where these hormones act through both genomic (i.e. interaction as transcription factors with nuclear receptors ER-alpha and ER-beta) and non-genomic (i.

View Article and Find Full Text PDF

A series of dihydrobenzoxathiin SERAMs with alkylated pyrrolidine side chains or alkylated linkers was prepared. Minor modifications in the side chain or linker resulted in significant effects on biological activity, especially in uterine tissue.

View Article and Find Full Text PDF

A series of neutral, nonbasic quinolone GnRH antagonists were prepared via Mitsunobu alkylation of protected and unprotected 4-hydroxy quinolone intermediates. The synthetic route was improved by utilization of unique reactivity and convergency afforded by the use of mono and bis-trimethylsilylethyl protected quinolones. Potent neutral GnRH antagonists were identified, including ether and lactam derivatives, that show similar in vitro binding affinity and functional activity as compared to the earlier basic 4-aminoalkyl quinolone series of nonpeptide GnRH antagonists.

View Article and Find Full Text PDF

A series of benzoxathiin SERAMs with heteroatom-substituted amine side chains was prepared. Minor modifications in the side chain resulted in significant effects on biological activity, especially in uterine tissue.

View Article and Find Full Text PDF

A series of benzoxathiin SERAMs with bicyclic amine side chains was prepared. Minor modifications in the side chain resulted in significant effects on biological activity, especially in uterine tissue.

View Article and Find Full Text PDF

Dihydrobenzodithiin compounds (1-6) were prepared to explore the expansion of the dihydrobenzoxathiin lead compounds I-III as SERAMs (Selective Estrogen Receptor Alpha Modulators). The dihydrobenzodithiin compounds generally maintained a high degree of selectivity for ERalpha over ERbeta, however, they lacked the in vivo antagonism/agonism activity exhibited by the lead class in an immature rat uterine growth model.

View Article and Find Full Text PDF

Dihydrobenzoxathiin analogs (1-11) with modifications on the basic side chain region were prepared and evaluated for estrogen/anti-estrogen activity in both in vitro and in vivo models. The compounds generally maintained a high degree of selectivity for ERalpha over ERbeta, similar to the original lead compound I. Many of the compounds also maintained high potency in the inhibition of human carcinoma MCF-7 cell growth.

View Article and Find Full Text PDF

A series of estrogen receptor ligands based on a dihydrobenzoxathiin scaffold is described and evaluated for estrogen/anti-estrogen activity in both in vitro and in vivo models. The most active analogue, 22, was found to be 40-fold ERalpha selective in a competitive binding assay, and 22 demonstrated very potent in vivo antagonism of estradiol driven proliferation in an immature rat uterine weight gain assay.

View Article and Find Full Text PDF