Publications by authors named "Susan Olalekan"

Ovarian cancer is a highly heterogeneous disease consisting of at least five different histological subtypes with varying clinical features, cells of origin, molecular composition, risk factors, and treatments. While most single-cell studies have focused on High grade serous ovarian cancer, a comprehensive landscape of the constituent cell types and their interactions within the tumor microenvironment are yet to be established in the different ovarian cancer histotypes. Further characterization of tumor progression, metastasis, and various histotypes are also needed to connect molecular signatures to pathological grading for personalized diagnosis and tailored treatment.

View Article and Find Full Text PDF

Dysregulated Myc signaling is a key oncogenic pathway in glioblastoma multiforme (GBM). Yet, effective therapeutic targeting of Myc continues to be challenging. Here, we demonstrate that exosomes generated from human bone marrow mesenchymal stem cells (MSCs) engineered to encapsulate siRNAs targeting Myc (iExo-Myc) localize to orthotopic GBM tumors in mice.

View Article and Find Full Text PDF

As part of the Human Cell Atlas Initiative, our goal is to generate single-cell transcriptomics (single-cell RNA sequencing [scRNA-seq], 86,708 cells) and regulatory (single-cell assay on transposase accessible chromatin sequencing [scATAC-seq], 59,830 cells) profiles of the normal postmenopausal ovary and fallopian tube (FT). The FT contains 11 major cell types, and the ovary contains 6. The dominating cell type in the FT and ovary is the stromal cell, which expresses aging-associated genes.

View Article and Find Full Text PDF

Understanding the cellular composition of the tumor microenvironment and the interactions of the cells is essential to the development of successful immunotherapies in cancer. We perform single-cell RNA sequencing (scRNA-seq) of 9,885 cells isolated from the omentum in 6 patients with ovarian cancer and identify 9 major cell types, including cancer, stromal, and immune cells. Transcriptional analysis of immune cells stratifies our patient samples into 2 groups: (1) high T cell infiltration (high T) and (2) low T cell infiltration (low T).

View Article and Find Full Text PDF

Three-dimensional (3D) in vitro models have been established to study the physiology and pathophysiology of the endometrium. With emerging evidence that the native extracellular matrix (ECM) provides appropriate cues and growth factors essential for tissue homeostasis, we describe, a novel 3D endometrium in vitro model developed from decellularized human endometrial tissue repopulated with primary endometrial cells. Analysis of the decellularized endometrium using mass spectrometry revealed an enrichment of cell adhesion molecules, cytoskeletal proteins, and ECM proteins such as collagen IV and laminin.

View Article and Find Full Text PDF

The endocrine system dynamically controls tissue differentiation and homeostasis, but has not been studied using dynamic tissue culture paradigms. Here we show that a microfluidic system supports murine ovarian follicles to produce the human 28-day menstrual cycle hormone profile, which controls human female reproductive tract and peripheral tissue dynamics in single, dual and multiple unit microfluidic platforms (Solo-MFP, Duet-MFP and Quintet-MPF, respectively). These systems simulate the in vivo female reproductive tract and the endocrine loops between organ modules for the ovary, fallopian tube, uterus, cervix and liver, with a sustained circulating flow between all tissues.

View Article and Find Full Text PDF

Clinical efficacy in the treatment of rheumatoid arthritis with anti-CD20 (Rituximab)-mediated B-cell depletion has garnered interest in the mechanisms by which B cells contribute to autoimmunity. We have reported that B-cell depletion in a murine model of proteoglycan-induced arthritis (PGIA) leads to an increase in Treg cells that correlate with decreased autoreactivity. Here, we demonstrate that the increase in Treg cells after B-cell depletion is due to an increase in the differentiation of naïve CD4(+) T cells into Treg cells.

View Article and Find Full Text PDF

Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory disease with striking heterogeneity in (i) clinical presentation, (ii) autoantibody profiles and (iii) responses to treatment suggesting that distinct molecular mechanisms may underlie the disease process. Proteoglycan-induced arthritis (PGIA) is induced by two pathways either by intraperitoneal (i.p.

View Article and Find Full Text PDF

Objective: Inducible costimulator (ICOS)-ICOSL interactions are necessary for activation of Teff cells and follicular helper T (Tfh) cells. ICOSL is expressed on B cells, macrophages, and dendritic cells and can be induced on nonhematopoietic cells. The aim of this study was to determine whether expression of ICOSL on B cells is necessary for the development of proteoglycan (PG)-induced arthritis (PGIA).

View Article and Find Full Text PDF

Th cytokines IFN-γ and IL-17 are linked to the development of autoimmune disease. In models of rheumatoid arthritis, that is, proteoglycan (PG)-induced arthritis, IFN-γ is required, whereas in collagen-induced arthritis, IL-17 is necessary for development of arthritis. In this study we show that the route of immunization determines the requirement for either IFN-γ or IL-17 in arthritis.

View Article and Find Full Text PDF