Eicosanoids are a class of molecules derived from C20 polyunsaturated fatty acids (PUFAs) that play a vital role in mammalian and insect biological systems, including development, reproduction, and immunity. Recent research has shown that insects have significant but lower levels of C20 PUFAs in circulation in comparison to C18 PUFAs. It has been previously hypothesized in insects that eicosanoids are synthesized from C18 precursors, such as linoleic acid (LA), to produce downstream eicosanoids.
View Article and Find Full Text PDFAxo-axonic cells (AACs) provide specialized inhibition to the axon initial segment (AIS) of excitatory neurons and can regulate network output and synchrony. Although hippocampal dentate AACs are structurally altered in epilepsy, physiological analyses of dentate AACs are lacking. We demonstrate that parvalbumin neurons in the dentate molecular layer express PTHLH, an AAC marker, and exhibit morphology characteristic of AACs.
View Article and Find Full Text PDFAxo-axonic cells (AACs) provide specialized inhibition to the axon initial segment (AIS) of excitatory neurons and can regulate network output and synchrony. Although hippocampal dentate AACs are structurally altered in epilepsy, physiological analyses of dentate AACs are lacking. We demonstrate that parvalbumin neurons in the dentate molecular layer express PTHLH, an AAC marker, and exhibit morphology characteristic of AACs.
View Article and Find Full Text PDFTraumatic brain injury leads to cellular and circuit changes in the dentate gyrus, a gateway to hippocampal information processing. Intrinsic granule cell firing properties and strong feedback inhibition in the dentate are proposed as critical to its ability to generate unique representation of similar inputs by a process known as pattern separation. Here we evaluate the impact of brain injury on cellular decorrelation of temporally patterned inputs in slices and behavioral discrimination of spatial locations in vivo one week after concussive lateral fluid percussion injury (FPI) in mice.
View Article and Find Full Text PDFTraumatic brain injury leads to cellular and circuit changes in the dentate gyrus, a gateway to hippocampal information processing. Intrinsic granule cell firing properties and strong feedback inhibition in the dentate are proposed as critical to its ability to generate unique representation of similar inputs by a process known as pattern separation. Here we evaluate the impact of brain injury on cellular decorrelation of temporally patterned inputs in slices and behavioral discrimination of spatial locations one week after concussive lateral fluid percussion injury (FPI) in mice.
View Article and Find Full Text PDFA key aspect of parasitic nematode infection is the nematodes' ability to evade and/or suppress host immunity. This immunomodulatory ability is likely driven by the release of hundreds of excretory/secretory proteins (ESPs) during infection. While ESPs have been shown to display immunosuppressive effects on various hosts, our understanding of the molecular interactions between individual proteins released and host immunity requires further study.
View Article and Find Full Text PDFIntroduction: Sunitinib is a multi-targeted receptor tyrosine kinase inhibitor used to treat metastatic renal cell carcinoma (mRCC). Patients on sunitinib do require regular in-person appointments to monitor for adverse events (AEs). Given the Covid-19 pandemic, regular in-person visits expose patients to an increased risk of infection in addition to potentially preventable travel costs.
View Article and Find Full Text PDFFatty acid-and retinol-binding proteins (FARs) belong to a unique family of excreted/secreted proteins (ESPs) found exclusively in nematodes. Much of our understanding of these proteins, however, is limited to their in vitro binding characteristics toward various fatty acids and retinol and has provided little insight into their in vivo functions or mechanisms. Recent research, however, has shown that FARs elicit an immunomodulatory role in plant and animal model systems, likely by sequestering lipids involved in immune signaling.
View Article and Find Full Text PDFParasitic nematodes cause significant morbidity and mortality globally. Excretory/secretory products (ESPs) such as fatty acid- and retinol- binding proteins (FARs) are hypothesized to suppress host immunity during nematode infection, yet little is known about their interactions with host tissues. Leveraging the insect parasitic nematode, Steinernema carpocapsae, we describe here the first in vivo study demonstrating that FARs modulate animal immunity, causing an increase in susceptibility to bacterial co-infection.
View Article and Find Full Text PDFIntroduction: In light of COVID-19, reducing patient exposure via remote monitoring is desirable. Patients prescribed abiraterone/ enzalutamide are scheduled for monthly in-person appointments to screen for adverse events (AEs). We determined time trends of drug-specific actionable AEs among users of abiraterone/enzalutamide to assess the safety of remote monitoring.
View Article and Find Full Text PDFThe mechanisms by which the neurophysiological and inflammatory responses to brain injury contribute to memory impairments are not fully understood. Recently, we reported that the innate immune receptor, toll-like receptor 4 (TLR4) enhances AMPA receptor (AMPAR) currents and excitability in the dentate gyrus after fluid percussion brain injury (FPI) while limiting excitability in controls. Here, we examine the cellular mediators underlying TLR4 regulation of dentate excitability and its impact on memory performance.
View Article and Find Full Text PDFObjectives: Explore the experience of patients undergoing colorectal surgery within an Enhanced Recovery After Surgery (ERAS) programme. Use these experiential data to inform the development of a framework to support ongoing, meaningful patient engagement in ERAS.
Design: Qualitative patient-led study using focus groups and narrative interviews.
Mutations in human cardiac troponin I (cTnI) have been associated with restrictive, dilated, and hypertrophic cardiomyopathies. The most commonly occurring residue on cTnI associated with familial hypertrophic cardiomyopathy (FHC) is arginine (R), which is also the most common residue at which multiple mutations occur. Two FHC mutations are known to occur at cTnI arginine 204, R204C and R204H, and both are associated with poor clinical prognosis.
View Article and Find Full Text PDFThe C-terminal region of cardiac troponin I (cTnI) is known to be important in cardiac function, as removal of the last 17 C-terminal residues of human cTnI has been associated with myocardial stunning. To investigate the C-terminal region of cTnI, three C-terminal deletion mutations in human cTnI were generated: Δ1 (deletion of residue 210), Δ3 (deletion of residues 208-210), and Δ5 (deletion of residues 206-210). Mammalian two-hybrid studies showed that the interactions between cTnI mutants and cardiac troponin C (cTnC) or cardiac troponin T (cTnT) were impaired in Δ3 and Δ5 mutants when compared to wild-type cTnI.
View Article and Find Full Text PDFObjective This case report is designed to illustrate an uncommon presentation of osteoradionecrosis (ORN) of the temporal bone and a treatment method for bloody otorrhea from a pseudoaneurysm of the internal carotid artery (ICA). Design This is a single patient case report Setting University of Missouri-Columbia Hospital and Clinics. Participants The report describes a patient with a history of hypopharyngeal squamous cell carcinoma (SCCA) who was previously treated with chemoradiation therapy and salvage bilateral neck dissections and then presented in a delayed fashion with profuse, episodic bloody otorrhea.
View Article and Find Full Text PDFFirst-generation, E1-deleted adenovirus subtype 5 (Ad5)-based vectors, although promising platforms for use as cancer vaccines, are impeded in activity by naturally occurring or induced Ad-specific neutralizing antibodies. Ad5-based vectors with deletions of the E1 and the E2b regions (Ad5 [E1-, E2b-]), the latter encoding the DNA polymerase and the pre-terminal protein, by virtue of diminished late phase viral protein expression, were hypothesized to avoid immunological clearance and induce more potent immune responses against the encoded tumor antigen transgene in Ad-immune hosts. Indeed, multiple homologous immunizations with Ad5 [E1-, E2b-]-CEA(6D), encoding the tumor antigen carcinoembryonic antigen (CEA), induced CEA-specific cell-mediated immune (CMI) responses with antitumor activity in mice despite the presence of preexisting or induced Ad5-neutralizing antibody.
View Article and Find Full Text PDFHuman slow skeletal troponin T (HSSTnT) shares a high degree of homology with cardiac TnT (CTnT). Although the presence of HSSTnT has not been confirmed in the heart at the protein level, detectable levels of HSSTnT mRNA have been found. Whether HSSTnT isoforms are expressed transiently remains unknown.
View Article and Find Full Text PDFThe ubiquitously distributed MAP1S is a homologue of the exclusively neuronal distributed microtubule-associated protein 1A and 1B (MAP1A/B). They give rise to multiple isoforms through similar post-translational modification. Isoforms of MAP1S have been implicated in microtubule dynamics and mitotic abnormalities and mitotic cell death.
View Article and Find Full Text PDFBackground: Autophagy is a dynamic process during which isolation membranes package substrates to form autophagosomes that are fused with lysosomes to form autolysosomes for degradation. Although it is agreed that the LC3II-associated mature autophagosomes move along microtubular tracks, it is still in dispute if the conversion of LC3I to LC3II before autophagosomes are fully mature and subsequent fusion of mature autophagosomes with lysosomes require microtubules.
Results: We use biochemical markers of autophagy and a collection of microtubule interfering reagents to test the question.
Cardiomyopathies, familial or sporadic, have become recognized as one of the leading cardiac threats. Hypertrophic cardiomyopathy (HCM) affects 0.2% of the population and is the leading cause of sudden death in young adults.
View Article and Find Full Text PDFEfficient synthesis of NAD(+) is critical to maintaining cell viability in all organs of the body. However, little is known of the pathway(s) by which cells of the central nervous system produce NAD(+). The aim of this study was to investigate the relationship, between tryptophan degradation via the kynurenine pathway (KP) and de novo NAD(+) synthesis in human astrocytes, a major cell type within the brain.
View Article and Find Full Text PDFFrom microscopic observations of autophagosome content it has been argued that autophagy is shut down during mitosis to protect the relative short-lived organelles spindle and chromosomes from the process while they are contiguous with cytosol. However, without autophagy, buildup of dysfunctional mitochondria arising from the intense energy demands of mitosis potentially poses a hazard to accurate partition of chromosomes. Here we show using biochemical markers of autophagosomes and mitophagosomes and a blockade at the lysosomal clearance step that autophagy/mitophagy persists during mitosis at robust levels equal to interphase.
View Article and Find Full Text PDF