The study aim was to assess the impact of different surface nanofeatures on otherwise smooth titanium surfaces on bacterial adhesion as well as on their osteogenic potential. Bacterial adhesion was assessed in the presence of saliva under static and dynamic conditions to approximate both sub- and supragingival conditions in the oral cavity as the gingival seal will be affected by implantation. The ultimate goal was to develop a surface that will reduce biofilm formation but still support osseointegration in vivo.
View Article and Find Full Text PDFWe present a novel protocol that uses single-cell force spectroscopy to characterize the bacteria-to-surface interactions involved in early steps of biofilm formation. Bacteria are immobilized as a monolayer by electrostatic interactions on a polyethylenimine-coated silica bead, and the bead complex is then glued on a tipless cantilever. We validated our new protocol by comparing to earlier published methods using single bacteria, but in contrast to these, which carry out bacterial attachment to the bead after fixation to the cantilever, our protocol results in more reliable production of usable cell probes.
View Article and Find Full Text PDF