Publications by authors named "Susan Moody"

Article Synopsis
  • The demand for diagnostic imaging services in the U.S. surged in 2022, leading to a scheduling backlog that increased the average interval from 2 weeks to 6 weeks.
  • A quality improvement initiative aimed to cut this interval to 10 days by January 2023, implementing strategies like double-booking slots and standardizing protocols, which ultimately reduced the interval to 3 days.
  • These interventions not only raised examination volumes by 19% (adding about $1.6 million in revenue) but also maintained consistent appointment delays, receiving positive feedback from staff.
View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive soft tissue sarcomas with limited treatment options, and new effective therapeutic strategies are desperately needed. We observe antiproliferative potency of genetic depletion of or pharmacological inhibition using the SHP2 inhibitor (SHP2i) TNO155. Our studies into the signaling response to SHP2i reveal that resistance to TNO155 is partially mediated by reduced RB function, and we therefore test the addition of a CDK4/6 inhibitor (CDK4/6i) to enhance RB activity and improve TNO155 efficacy.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft tissue sarcomas with limited treatment options, and novel effective therapeutic strategies are desperately needed. We observe anti-proliferative efficacy of genetic depletion or pharmacological inhibition using the clinically available SHP2 inhibitor (SHP2i) TNO155. Our studies into the signaling response to SHP2i reveal that resistance to TNO155 is partially mediated by reduced RB function, and we therefore test the addition of a CDK4/6 inhibitor (CDK4/6i) to enhance RB activity and improve TNO155 efficacy.

View Article and Find Full Text PDF

Background: Breast cancer mortality is principally due to tumor recurrence, which can occur following extended periods of clinical remission that may last decades. While clinical latency has been postulated to reflect the ability of residual tumor cells to persist in a dormant state, this hypothesis remains unproven since little is known about the biology of these cells. Consequently, defining the properties of residual tumor cells is an essential goal with important clinical implications for preventing recurrence and improving cancer outcomes.

View Article and Find Full Text PDF

Background: This Phase 1 study assessed the safety and efficacy of the Porcupine inhibitor, WNT974, in patients with advanced solid tumours.

Methods: Patients (n = 94) received oral WNT974 at doses of 5-30 mg once-daily, plus additional dosing schedules.

Results: The maximum tolerated dose was not established; the recommended dose for expansion was 10 mg once-daily.

View Article and Find Full Text PDF

Purpose: SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development.

Experimental Design: The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRASi, CDK4/6i, and anti-programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models and , and their effects on downstream signaling were examined.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on nazartinib (EGF816), a third-generation EGFR tyrosine kinase inhibitor, aimed at patients with advanced non-small-cell lung cancer (NSCLC) who have specific EGFR mutations, including the Thr790Met mutation that contributes to treatment resistance.
  • Conducted across nine academic centers, the phase 1 trial involved patients aged 18 and older with stage IIIB-IV EGFR-mutant NSCLC, assessing the safety and optimal dosage of nazartinib using a structured dose-escalation approach.
  • By the end of August 2017, a total of 180 patients were treated, and while some dose-limiting toxicities were noted
View Article and Find Full Text PDF

, an oncogene mutated in nearly one third of human cancers, remains a pharmacologic challenge for direct inhibition except for recent advances in selective inhibitors targeting the G12C variant. Here, we report that selective inhibition of the protein tyrosine phosphatase, SHP2, can impair the proliferation of KRAS-mutant cancer cells and using cell line xenografts and primary human tumors. , sensitivity of KRAS-mutant cells toward the allosteric SHP2 inhibitor, SHP099, is not apparent when cells are grown on plastic in 2D monolayer, but is revealed when cells are grown as 3D multicellular spheroids.

View Article and Find Full Text PDF

FGFR1 was recently shown to be activated as part of a compensatory response to prolonged treatment with the MEK inhibitor trametinib in several KRAS-mutant lung and pancreatic cancer cell lines. We hypothesize that other receptor tyrosine kinases (RTK) are also feedback-activated in this context. Herein, we profile a large panel of KRAS-mutant cancer cell lines for the contribution of RTKs to the feedback activation of phospho-MEK following MEK inhibition, using an SHP2 inhibitor (SHP099) that blocks RAS activation mediated by multiple RTKs.

View Article and Find Full Text PDF

Purpose: Third-generation epidermal growth factor receptor (EGFR) inhibitors like nazartinib are active against mutation-positive lung cancers with T790M-mediated acquired resistance to initial anti-EGFR treatment, but some patients have mixed responses.

Methods: Multiple serial tumor and liquid biopsies were obtained from two patients before, during, and after treatment with nazartinib. Next-generation sequencing and droplet digital polymerase chain reaction were performed to assess heterogeneity and clonal dynamics.

View Article and Find Full Text PDF

Most anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung tumors initially respond to small-molecule ALK inhibitors, but drug resistance often develops. Of tumors that develop resistance to highly potent second-generation ALK inhibitors, approximately half harbor resistance mutations in ALK, while the other half have other mechanisms underlying resistance. Members of the latter group often have activation of at least one of several different tyrosine kinases driving resistance.

View Article and Find Full Text PDF

Oncogenic mutations are found in a significant fraction of human cancers, but therapeutic inhibition of PI3K has only shown limited success in clinical trials. To understand how mutant PIK3CA contributes to cancer cell proliferation, we used genome scale loss-of-function screening in a large number of genomically annotated cancer cell lines. As expected, we found that mutant cancer cells require but also require the expression of the TCA cycle enzyme 2-oxoglutarate dehydrogenase (OGDH).

View Article and Find Full Text PDF
Article Synopsis
  • KRAS, a key player in tumor development, activates additional pathways beyond MAPK and PI3K, which are crucial for tumor maintenance.
  • Researchers found that the kinases TBK1 and IKKε support KRAS-driven tumor growth by regulating the release of cytokines like CCL5 and IL-6.
  • The drug CYT387 effectively inhibits these signaling pathways, leading to reduced tumor growth and enhanced treatment effects when combined with MAPK inhibition in mouse models of lung cancer.
View Article and Find Full Text PDF

Chromosome 8q24 is the most commonly amplified region across multiple cancer types, and the typical length of the amplification suggests that it may target additional genes to MYC. To explore the roles of the genes most frequently included in 8q24 amplifications, we analyzed the relation between copy number alterations and gene expression in three sets of endometrial cancers (N = 252); and in glioblastoma, ovarian, and breast cancers profiled by TCGA. Among the genes neighbouring MYC, expression of the bromodomain-containing gene ATAD2 was the most associated with amplification.

View Article and Find Full Text PDF

The recent development of technologies for whole-genome sequencing, copy number analysis and expression profiling enables the generation of comprehensive descriptions of cancer genomes. However, although the structural analysis and expression profiling of tumors and cancer cell lines can allow the identification of candidate molecules that are altered in the malignant state, functional analyses are necessary to confirm such genes as oncogenes or tumor suppressors. Moreover, recent research suggests that tumor cells also depend on synthetic lethal targets, which are not mutated or amplified in cancer genomes; functional genomics screening can facilitate the discovery of such targets.

View Article and Find Full Text PDF

The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele.

View Article and Find Full Text PDF

Breast cancers frequently progress or relapse during targeted therapy, but the molecular mechanisms that enable escape remain poorly understood. We elucidated genetic determinants underlying tumor escape in a transgenic mouse model of Wnt pathway-driven breast cancer, wherein targeted therapy is simulated by abrogating doxycycline-dependent Wnt1 transgene expression within established tumors. In mice with intact tumor suppressor pathways, tumors typically circumvented doxycycline withdrawal by reactivating Wnt signaling, either via aberrant (doxycycline-independent) Wnt1 transgene expression or via acquired somatic mutations in the gene encoding beta-catenin.

View Article and Find Full Text PDF

Activating Ras mutations can induce either proliferation or senescence depending on the cellular context. To determine whether Ras activation has context-dependent effects in the mammary gland, we generated doxycycline-inducible transgenic mice that permit Ras activation to be titrated. Low levels of Ras activation - similar to those found in non-transformed mouse tissues expressing endogenous oncogenic Kras2 - stimulate cellular proliferation and mammary epithelial hyperplasias.

View Article and Find Full Text PDF

Neuregulins play crucial roles in early development of Schwann cells (SCs), but their roles in the activities of SCs during denervation and reinnervation of muscle are less clear. In the present study, the Tet-On system has been used in transgenic mice to enable inducible expression of a mutant, constitutively active neuregulin receptor (ErbB2) in SCs. This induction simulates neuregulin signaling to these cells.

View Article and Find Full Text PDF

Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis.

View Article and Find Full Text PDF

We overexpressed a constitutively active form of the neuregulin receptor ErbB2 (CAErbB2) in skeletal muscle fibers in vivo and in vitro by tetracycline-inducible expression. Surprisingly, CAErbB2 expression during embryonic development was lethal and impaired synaptogenesis yielding a phenotype with loss of synaptic contacts, extensive axonal sprouting, and diffuse distribution of acetylcholine receptor (AChR) transcripts, reminiscent of agrin-deficient mice. CAErbB2 expression in cultured myotubes inhibited the formation and maintenance of agrin-induced AChR clusters, suggesting a muscle- and not a nerve-origin for the defect in CAErbB2-expressing mice.

View Article and Find Full Text PDF

Breast cancer recurrence is a fundamental clinical manifestation of tumor progression and represents the principal cause of death from this disease. Using a conditional transgenic mouse model for the recurrence of HER2/neu-induced mammary tumors, we demonstrate that the transcriptional repressor Snail is spontaneously upregulated in recurrent tumors in vivo and that recurrence is accompanied by epithelial-to-mesenchymal transition (EMT). Consistent with a causal role for Snail in these processes, we show that Snail is sufficient to induce EMT in primary tumor cells, that Snail is sufficient to promote mammary tumor recurrence in vivo, and that high levels of Snail predict decreased relapse-free survival in women with breast cancer.

View Article and Find Full Text PDF

To address the role of transforming growth factor (TGF) beta in the progression of established tumors while avoiding the confounding inhibitory effects of TGF-beta on early transformation, we generated doxycycline (DOX)-inducible triple transgenic mice in which active TGF-beta1 expression could be conditionally regulated in mouse mammary tumor cells transformed by the polyomavirus middle T antigen. DOX-mediated induction of TGF-beta1 for as little as 2 weeks increased lung metastases >10-fold without a detectable effect on primary tumor cell proliferation or tumor size. DOX-induced active TGF-beta1 protein and nuclear Smad2 were restricted to cancer cells, suggesting a causal association between autocrine TGF-beta and increased metastases.

View Article and Find Full Text PDF

Aberrant activation of Wnt signaling is oncogenic and has been implicated in a variety of human cancers. We have developed a doxycycline-inducible Wnt1 transgenic mouse model to determine the dependence of established mammary adenocarcinomas on continued Wnt signaling. Using this model we show that targeted down-regulation of the Wnt pathway results in the rapid disappearance of essentially all Wnt-initiated invasive primary tumors as well as pulmonary metastases.

View Article and Find Full Text PDF

To determine the impact of tumor progression on the reversibility of Neu-induced tumorigenesis, we have used the tetracycline regulatory system to conditionally express activated Neu in the mammary epithelium of transgenic mice. When induced with doxycycline, bitransgenic MMTV-rtTA/TetO-NeuNT mice develop multiple invasive mammary carcinomas, essentially all of which regress to a clinically undetectable state following transgene deinduction. This demonstrates that Neu-initiated tumorigenesis is reversible.

View Article and Find Full Text PDF