Publications by authors named "Susan Medina"

The regulation of plant transpiration was proposed as a key factor affecting transpiration efficiency and agronomical adaptation of wheat to water-limited Mediterranean environments. However, to date no studies have related this trait to crop performance in the field. In this study, the transpiration response to increasing (VPD) of modern Spanish semi-dwarf durum wheat lines was evaluated under controlled conditions at vegetative stage, and the agronomical performance of the same set of lines was assessed at grain filling as well as grain yield at maturity, in Mediterranean environments ranging from water stressed to good agronomical conditions.

View Article and Find Full Text PDF

Under conditions of high vapor pressure deficit (VPD) and soil drying, restricting transpiration is an important avenue to gain efficiency in water use. The question we raise in this article is whether breeding for agro-ecological environments that differ for the rainfall have selected for traits that control plant water use. These are measured in pearl millet materials bred for zones varying in rainfall (8 combinations of parent and F-hybrids, 18 F-hybrids and then 40 F-hybrids).

View Article and Find Full Text PDF

The interaction of elevated [CO] and water stress will have an effect on the adaptation of durum wheat to future climate scenarios. For the Mediterranean basin these scenarios include the rising occurrence of water stress during the first part of the crop cycle. In this study, we evaluated the interactive effects of elevated [CO] and moderate to severe water stress during the first part of the growth cycle on physiological traits and gene expression in four modern durum wheat genotypes.

View Article and Find Full Text PDF

Producing more food per unit of water has never been as important as it is at present, and the demand for water by economic sectors other than agriculture will necessarily put a great deal of pressure on a dwindling resource, leading to a call for increases in the productivity of water in agriculture. This topic has been given high priority in the research agenda for the last 30 years, but with the exception of a few specific cases, such as water-use-efficient wheat in Australia, breeding crops for water-use efficiency has yet to be accomplished. Here, we review the efforts to harness transpiration efficiency (TE); that is, the genetic component of water-use efficiency.

View Article and Find Full Text PDF