Publications by authors named "Susan M O'Donnell"

  The depths of entry of municipal wastewater into receiving lakes importantly affects associated impacts on water quality. The plunging behavior of two negatively buoyant inflows that carry municipal waste, an urban tributary and an effluent discharge, in Onondaga Lake, NY, is characterized and quantified based on an integrated program of monitoring, density calculations, and modeling. In-lake signatures of plunging from the two inflows are differentiated according to constituents in which each is enriched.

View Article and Find Full Text PDF

A retrospective review and analysis are presented of the evolution of treatment, point of discharge considerations, and constituent loading from the Metropolitan Syracuse Wastewater Treatment Plant (Metro), and the coupled water quality effects on the receiving urban lake (Onondaga Lake, New York) from the early 1970s to 2010. The analysis is based on long-term monitoring of the discharge, Onondaga Lake, and a nearby river system considered as a potential alternate to receive the effluent. The Metro discharge is extraordinarily large relative to the lake's hydrologic budget, representing approximately 25% of the total inflow, greater than for any other lake in the United States.

View Article and Find Full Text PDF

Factors that diminish the effectiveness of phosphorus inputs from a municipal wastewater treatment facility (Metro) in contributing to phosphorus levels and its availability to support algae growth in a culturally eutrophic urban lake (Onondaga Lake, NY) were characterized and quantified. These factors included the bioavailability and settling characteristics of particulate phosphorus from this effluent, the dominant form (70%) of phosphorus in this input, and the plunging of the discharge to stratified layers in the lake. Supporting studies included: (1) chemical and morphometric characterization of the phosphorus-enriched particles of this effluent, compared to particle populations of the tributaries and lake, with an individual particle analysis technique; (2) conduct of algal bioavailability assays of the particulate phosphorus of the effluent; (3) conduct of multiple size class settling velocity measurements on effluent particles; and (4) determinations of the propensity of the discharge to plunge, and documentation of plunging through three-dimensional monitoring of a tracer adjoining the outfall.

View Article and Find Full Text PDF