Publications by authors named "Susan M Motch"

Craniofacial and neural tissues develop in concert throughout prenatal and postnatal growth. FGFR-related craniosynostosis syndromes, such as Apert syndrome (AS), are associated with specific phenotypes involving both the skull and the brain. We analyzed the effects of the FGFR P253R mutation for AS using the Fgfr2(+/P253R) Apert syndrome mouse to evaluate the effects of this mutation on these two tissues over the course of development from day of birth (P0) to postnatal day 2 (P2).

View Article and Find Full Text PDF

Background: The role of fibroblast growth factor and receptor (FGF/FGFR) signaling in bone development is well studied, partly because mutations in FGFRs cause human diseases of achondroplasia and FGFR-related craniosynostosis syndromes including Crouzon syndrome. The FGFR2c C342Y mutation is a frequent cause of Crouzon syndrome, characterized by premature cranial vault suture closure, midfacial deficiency, and neurocranial dysmorphology. Here, using newborn Fgfr2c(C342Y/+) Crouzon syndrome mice, we tested whether the phenotypic effects of this mutation go beyond the skeletal tissues of the skull, altering the development of other non-skeletal head tissues including the brain, the eyes, the nasopharynx, and the inner ears.

View Article and Find Full Text PDF

Calcitonin (CT) is primarily produced by the thyroid C cells in mammals or by the ultimobranchial gland in chickens. CT is also expressed by the pituitary gland in rats in which it functions as a paracrine factor causing decreased lactotroph proliferation and prolactin (PRL) secretion. Gonadal steroids influence CT expression in the rat pituitary gland.

View Article and Find Full Text PDF