Major histocompatibility complex class I (MHC-I) molecules, which are dimers of a glycosylated polymorphic transmembrane heavy chain and the small-protein β-microglobulin (βm), bind peptides in the endoplasmic reticulum that are generated by the cytosolic turnover of cellular proteins. In virus-infected cells, these peptides may include those derived from viral proteins. Peptide-MHC-I complexes then traffic through the secretory pathway and are displayed at the cell surface where those containing viral peptides can be detected by CD8 T lymphocytes that kill infected cells.
View Article and Find Full Text PDFUnlabelled: Major histocompatibility complex class I (MHC-I) molecules, which are dimers of a glycosylated polymorphic transmembrane heavy chain and the small protein β -microglobulin (β m), bind peptides in the endoplasmic reticulum that are generated by the cytosolic turnover of cellular proteins. In virus-infected cells these peptides may include those derived from viral proteins. Peptide-MHC-I complexes then traffic through the secretory pathway and are displayed at the cell surface where those containing viral peptides can be detected by CD8 T lymphocytes that kill infected cells.
View Article and Find Full Text PDFThe pigment cell-specific protein PMEL forms a functional amyloid matrix in melanosomes onto which the pigment melanin is deposited. The amyloid core consists of a short proteolytic fragment, which we have termed the core-amyloid fragment (CAF) and perhaps additional parts of the protein, such as the PKD domain. A highly O-glycosylated repeat (RPT) domain also derived from PMEL proteolysis associates with the amyloid and is necessary to establish the sheet-like morphology of the assemblies.
View Article and Find Full Text PDFPMEL is a pigment cell-specific protein that forms a functional amyloid matrix in melanosomes. The matrix consists of well-separated fibrillar sheets on which the pigment melanin is deposited. Using electron tomography, we demonstrate that this sheet architecture is governed by the PMEL repeat (RPT) domain, which associates with the amyloid as an accessory proteolytic fragment.
View Article and Find Full Text PDFOver the last few years a number of restriction enzymes that cut DNA only if cytosines within their recognition sequences are methylated have been characterized and become commercially available. Cleavage with these enzymes to release DNA fragments in a methylation-dependent manner can be combined with a novel method of amplification, Helper Dependent Chain Reaction (HDCR), to selectively amplify these fragments. HDCR uses "Helper" oligonucleotides as templates for extension of the free 3' end of target fragments to incorporate tag sequences at the ends of fragments.
View Article and Find Full Text PDFPMEL is a pigment cell protein that forms physiological amyloid in melanosomes. Many amyloids and/or their oligomeric precursors are toxic, causing or contributing to severe, incurable diseases including Alzheimer's and prion diseases. Striking similarities in intracellular formation pathways between PMEL and various pathological amyloids including Aβ and PrP suggest PMEL is an excellent model system to study endocytic amyloid.
View Article and Find Full Text PDFSolid tumors shed DNA into circulation, and there is growing evidence that the detection of circulating tumor DNA (ctDNA) has broad clinical utility, including monitoring of disease, prognosis, response to chemotherapy and tracking tumor heterogeneity. The appearance of ctDNA in the circulating cell-free DNA (ccfDNA) isolated from plasma or serum is commonly detected by identifying tumor-specific features such as insertions, deletions, mutations and/or aberrant methylation. Methylation is a normal cell regulatory event, and since the majority of ccfDNA is derived from white blood cells (WBC), it is important that tumour-specific DNA methylation markers show rare to no methylation events in WBC DNA.
View Article and Find Full Text PDFThe CAHM gene (Colorectal Adenocarcinoma HyperMethylated), previously LOC100526820, is located on chromosome 6, hg19 chr6:163 834 097-163 834 982. It lacks introns, encodes a long non-coding RNA (lncRNA) and is located adjacent to the gene QKI, which encodes an RNA binding protein. Deep bisulphite sequencing of ten colorectal cancer (CRC) and matched normal tissues demonstrated frequent hypermethylation within the CAHM gene in cancer.
View Article and Find Full Text PDFThe TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accessory molecules such as ERp57 and calreticulin. Three tapasin binding sites on TAP have been described, two of which are located in the N-terminal domains of TAP1 and TAP2.
View Article and Find Full Text PDFBackground: The development of colorectal cancer (CRC) is accompanied by extensive epigenetic changes, including frequent regional hypermethylation particularly of gene promoter regions. Specific genes, including SEPT9, VIM1 and TMEFF2 become methylated in a high fraction of cancers and diagnostic assays for detection of cancer-derived methylated DNA sequences in blood and/or fecal samples are being developed. There is considerable potential for the development of new DNA methylation biomarkers or panels to improve the sensitivity and specificity of current cancer detection tests.
View Article and Find Full Text PDFDifferential denaturation during PCR can be used to selectively amplify unmethylated DNA from a methylated DNA background. The use of differential denaturation in PCR is particularly suited to amplification of undermethylated sequences following treatment with bisulphite, since bisulphite selectively converts cytosines to uracil while methylated cytosines remain unreactive. Thus amplicons derived from unmethylated DNA retain fewer cytosines and their lower G + C content allows for their amplification at the lower melting temperatures, while limiting amplification of the corresponding methylated amplicons (Bisulphite Differential Denaturation PCR, BDD-PCR).
View Article and Find Full Text PDFSelective amplification in PCR is principally determined by the sequence of the primers and the temperature of the annealing step. We have developed a new PCR technique for distinguishing related sequences in which additional selectivity is dependent on sequences within the amplicon. A 5' extension is included in one (or both) primer(s) that corresponds to sequences within one of the related amplicons.
View Article and Find Full Text PDFResidues 386-423 of the rat brain serotonin transporter (SERT) are predicted to form a hydrophilic loop connecting transmembrane spans 7 and 8 (extracellular loop 4 or EL4). EL4 has been hypothesized to play a role in conformational changes associated with substrate translocation. To more fully investigate EL4 structure and function, we performed cysteine-scanning mutagenesis and methanethiosulfonate (MTS) accessibility studies on these 38 residues.
View Article and Find Full Text PDFMethadone pharmacokinetics were determined in an open-label, within subject study in 16 methadone-maintained, non-HIV-infected subjects prior to and following administration of one lamivudine 150-mg/zidovudine 300-mg combination tablet to determine whether this antiretroviral therapy alters methadone serum concentrations. No significant differences in the mean area under the serum concentration-time curve (AUC(0-24h); 8,753 +/- 4,280 vs. 8,641 +/- 4,431 microg-h/L),oralclearance(CL/F;9.
View Article and Find Full Text PDF