Publications by authors named "Susan M Majka"

Reactivation and dysregulation of the mTOR signaling pathway are a hallmark of aging and chronic lung disease; however, the impact on microvascular progenitor cells (MVPCs), capillary angiostasis, and tissue homeostasis is unknown. While the existence of an adult lung vascular progenitor has long been hypothesized, these studies show that Abcg2 enriches for a population of angiogenic tissue-resident MVPCs present in both adult mouse and human lungs using functional, lineage, and transcriptomic analyses. These studies link human and mouse MVPC-specific mTORC1 activation to decreased stemness, angiogenic potential, and disruption of p53 and Wnt pathways, with consequent loss of alveolar-capillary structure and function.

View Article and Find Full Text PDF

Pulmonary vascular dysfunction is characterized by remodeling and loss of microvessels in the lung and is a major manifestation of chronic lung diseases (CLD). In murine models of CLD, the small arterioles and capillaries are the first and most prevalent vessels that are affected by pruning and remodeling. Thus, visualization of the pulmonary arterial vasculature in three dimensions is essential to define pruning and remodeling both temporally and spatially and its role in the pathogenesis of CLD, aging, and tissue repair.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to evaluate a new method, quantitative microscopy-particulate matter (QM-PM), for analyzing lung dust in coal miners with progressive massive fibrosis, addressing limitations of existing methods.
  • QM-PM was found to produce results comparable to pathologists' assessments and scanning electron microscopy analyses, revealing higher mineral density in contemporary miners compared to historical miners and controls.
  • This automated technique offers a reliable, efficient way to characterize lung dust and could enhance understanding of occupational lung diseases.
View Article and Find Full Text PDF

The pathogenesis of chronic obstructive pulmonary disease (COPD), a prevalent disease primarily caused by cigarette smoke exposure, is incompletely elucidated. Studies in humans and mice have suggested that hypoxia-inducible factor-1α (HIF-1α) may play a role. Reduced lung levels of HIF-1α are associated with decreased vascular density, whereas increased leukocyte HIF-1α may be responsible for increased inflammation.

View Article and Find Full Text PDF

A subpopulation of adipocytes in the major adipose depots of mice is produced from hematopoietic stem cells rather than mesenchymal progenitors that are the source of conventional white and brown/beige adipocytes. To analyze the impact of hematopoietic stem cell-derived adipocytes (HSCDAs) in the adipose niche we transplanted HSCs in which expression of a diphtheria toxin gene was under the control of the adipocyte-specific adiponectin gene promoter into irradiated wild type recipients. Thus, only adipocytes produced from HSC would be ablated while conventional white and brown adipocytes produced from mesenchymal progenitor cells would be spared.

View Article and Find Full Text PDF

Resolution of inflammation is an active process that is tightly regulated to achieve repair and tissue homeostasis. In the absence of resolution, persistent inflammation underlies the pathogenesis of chronic lung disease such as chronic obstructive pulmonary disease (COPD) with recurrent exacerbations. Over the course of inflammation, macrophage programming transitions from pro-inflammatory to pro-resolving, which is in part regulated by the nuclear receptor Peroxisome Proliferator-Activated Receptor γ (PPARγ).

View Article and Find Full Text PDF

Hemopexin (Hpx) is a crucial defense protein against heme liberated from degraded hemoglobin during hemolysis. High heme stress creates an imbalance in Hpx bioavailability, favoring heme accumulation and downstream pathophysiological responses leading to cardiopulmonary disease progression in sickle cell disease (SCD) patients. Here, we evaluated a model of murine SCD, which was designed to accelerate red blood cell sickling, pulmonary hypertension, right ventricular dysfunction, and exercise intolerance by exposure of the mice to moderate hypobaric hypoxia.

View Article and Find Full Text PDF

Some adipocytes are produced from bone marrow hematopoietic stem cells. studies previously indicated that these bone marrow-derived adipocytes (BMDAs) were generated from adipose tissue macrophage (ATM) that lose their hematopoietic markers and acquire mesenchymal markers prior to terminal adipogenic differentiation. Here we interrogated whether this hematopoietic-to-mesenchymal transition drives BMDA production .

View Article and Find Full Text PDF

The well-described Wnt inhibitor Dickkopf-1 (DKK1) plays a role in angiogenesis as well as in regulation of growth factor signaling cascades in pulmonary remodeling associated with chronic lung diseases (CLDs) including emphysema and fibrosis. However, the specific mechanisms by which DKK1 influences mesenchymal vascular progenitor cells (MVPCs), microvascular endothelial cells (MVECs), and smooth muscle cells (SMCs) within the microvascular niche have not been elucidated. In this study, we show that knockdown of DKK1 in Abcg2 lung mouse adult tissue resident MVPCs alters lung stiffness, parenchymal collagen deposition, microvessel muscularization and density as well as loss of tissue structure in response to hypoxia exposure.

View Article and Find Full Text PDF

S100 calcium-binding protein A9 (S100A9) is elevated in plasma and bronchoalveolar lavage fluid (BALF) of patients with chronic obstructive pulmonary disease (COPD), and aging enhances S100A9 expression in several tissues. Currently, the direct impact of S100A9-mediated signaling on lung function and within the aging lung is unknown. Here, we observed that elevated S100A9 levels in human BALF correlated with age.

View Article and Find Full Text PDF

Adaptive angiogenesis is necessary for tissue repair, however, it may also be associated with the exacerbation of injury and development of chronic disease. In these studies, we demonstrate that lung mesenchymal vascular progenitor cells (MVPC) modulate adaptive angiogenesis via lineage trace, depletion of MVPC, and modulation of β-catenin expression. Single cell sequencing confirmed MVPC as multipotential vascular progenitors, thus, genetic depletion resulted in alveolar simplification with reduced adaptive angiogenesis.

View Article and Find Full Text PDF

Tissue resident mesenchymal progenitor cells (MPC) are important regulators of tissue repair or regeneration, remodeling, inflammation, and angiogenesis. Here we describe a technology used to define, isolate, and characterize a population of resident lung MPC in both human and mouse explanted tissue. The definition of this population using a defined set of markers facilitates the repeatable isolation of a mesenchymal subpopulation population by flow cytometry and the subsequent translational study of this specific cell type and function.

View Article and Find Full Text PDF

Levels of the cAMP-responsive transcription factor, CREB, are reduced in medial smooth muscle cells in remodeled pulmonary arteries from hypertensive calves and rats with chronic hypoxia-induced pulmonary hypertension. Here, we show that chronic hypoxia fails to promote CREB depletion in pulmonary artery smooth muscle cells or elicit significant remodeling of the pulmonary arteries in mice, suggesting that sustained CREB expression prevents hypoxia-induced pulmonary artery remodeling. This hypothesis was tested by generating mice, in which CREB was ablated in smooth muscle cells.

View Article and Find Full Text PDF

Pulmonary hypertension may arise as a complication of chronic lung disease typically associated with tissue hypoxia, as well as infectious agents or injury eliciting a type 2 immune response. The onset of pulmonary hypertension in this setting (classified as Group 3) often complicates treatment and worsens prognosis of chronic lung disease. Chronic lung diseases such as chronic obstructive lung disease (COPD), emphysema, and interstitial lung fibrosis impair airflow and alter lung elastance in addition to affecting pulmonary vascular hemodynamics that may culminate in right ventricle dysfunction.

View Article and Find Full Text PDF

Enhanced expression of the cellular antioxidant glutathione peroxidase (GPX)-1 prevents cigarette smoke-induced lung inflammation and tissue destruction. Subjects with chronic obstructive pulmonary disease (COPD), however, have decreased airway GPX-1 levels, rendering them more susceptible to disease onset and progression. The mechanisms that downregulate GPX-1 in the airway epithelium in COPD remain unknown.

View Article and Find Full Text PDF

The adult lung is comprised of diverse vascular, epithelial, and mesenchymal progenitor cell populations that reside in distinct niches. Mesenchymal progenitor cells (MPCs) are intimately associated with both the epithelium and the vasculature, and new evidence is emerging to describe their functional roles in these niches. Also emerging, following lineage analysis and single cell sequencing, is a new understanding of the diversity of mesenchymal cell subpopulations in the lung.

View Article and Find Full Text PDF

Over one million Americans experience myocardial infarction (MI) annually, and the resulting scar and subsequent cardiac fibrosis gives rise to heart failure. A specialized cell-cell adhesion protein, cadherin-11 (CDH11), contributes to inflammation and fibrosis in rheumatoid arthritis, pulmonary fibrosis, and aortic valve calcification but has not been studied in myocardium after MI. MI was induced by ligation of the left anterior descending artery in mice with either heterozygous or homozygous knockout of CDH11, wild-type mice receiving bone marrow transplants from Cdh11-deficient animals, and wild-type mice treated with a functional blocking antibody against CDH11 (SYN0012).

View Article and Find Full Text PDF

Tuberous sclerosis complex 2 (TSC2), or tuberin, is a pivotal regulator of the mechanistic target of rapamycin signaling pathway that controls cell survival, proliferation, growth, and migration. Loss of function manifests in organ-specific consequences, the mechanisms of which remain incompletely understood. Recent single cell analysis of the kidney has identified ATP-binding cassette G2 (Abcg2) expression in renal proximal tubules of adult mice as well as a in a novel cell population.

View Article and Find Full Text PDF

Rationale: Pulmonary arterial hypertension is a deadly disease of the pulmonary vasculature for which no disease-modifying therapies exist. Small-vessel stiffening and remodeling are fundamental pathological features of pulmonary arterial hypertension that occur early and drive further endovascular cell dysfunction. Bone marrow (BM)-derived proangiogenic cells (PACs), a specialized heterogeneous subpopulation of myeloid lineage cells, are thought to play an important role in pathogenesis.

View Article and Find Full Text PDF

Objective: To characterize the phenotype and function of fibroblasts derived from airway scar in idiopathic subglottic stenosis (iSGS) and to explore scar fibroblast response to interleukin 17A (IL-17A).

Study Design: Basic science.

Setting: Laboratory.

View Article and Find Full Text PDF

Sex differences in body fat distribution and menopause-associated shifts in regional adiposity suggest that sex hormones play an important role in regulating the differentiation and distribution of adipocytes, but the underlying mechanisms have not been fully explained. The aim of this study was to determine whether ovarian hormone status influences the production and distribution of adipocytes in adipose tissue arising from bone marrow-derived cells. Nine- to ten-week-old ovariectomized (OVX), surgery naïve (WT), and estrogen receptor alpha knockout (αERKO) mice underwent bone marrow transplantation from luciferase or green fluorescent protein expressing donors.

View Article and Find Full Text PDF
Article Synopsis
  • Acute respiratory distress syndrome (ARDS) leads to severe lung inflammation and low oxygen levels, posing a risk of death, making effective strategies crucial for improving patient outcomes.
  • The study assessed GBT1118, a compound designed to enhance hemoglobin's oxygen-carrying capacity, in a murine model of lung injury, showing it significantly reduced mortality and improved oxygen saturation compared to untreated controls.
  • GBT1118 treatments did not negatively impact lung tissue integrity or inflammation levels, suggesting that increasing oxygen affinity of hemoglobin could be a promising therapy for hypoxemia in ARDS patients.
View Article and Find Full Text PDF

Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels.

View Article and Find Full Text PDF

Vasculopathies, characterized by the formation of fragile and abnormal microvessels, are associated with the severity of many chronic lung diseases, including pulmonary fibrosis, emphysema/chronic obstructive pulmonary disease, systemic sclerosis, and hypertension. However, the study of human lung vasculature has been limited by the ability to isolate generous quantities of microvascular endothelial cells (MVEC) free from mesenchymal contamination. Expansion and passaging of primary human MVEC in vitro typically results in loss of a traditional phenotype in favor of an intermediate mesenchymal one, as early as passage five.

View Article and Find Full Text PDF