Addiction is a disorder that can be characterized in part as the constant pursuit of a particular substance despite negative consequences. Although the orbitofrontal cortex (OFC) is known to regulate risk-taking more generally and be critical to the development of addiction, its role in regulating drug use under risk-taking conditions is unknown. To address this, we examined drug-taking and drug-seeking in male and female rats under conditions where cocaine infusions were paired with foot shock punishment 50% of the time and combined this paradigm with cFos immunohistochemistry.
View Article and Find Full Text PDFRepeated pairing of a drug with a neutral stimulus, such as a cue or context, leads to the attribution of the drug's reinforcing properties to that stimulus, and exposure to that stimulus in the absence of the drug can elicit drug-seeking. A principal role for the NAc in the response to drug-associated stimuli has been well documented. Direct and indirect pathway medium spiny neurons (dMSNs and iMSNs) have been shown to bidirectionally regulate cue-induced heroin-seeking in rats expressing addiction-like phenotypes, and a shift in NAc activity toward the direct pathway has been shown in mice following cocaine conditioned place preference (CPP).
View Article and Find Full Text PDFThe subthalamic nucleus (STN) is a key node in cortico-basal-ganglia thalamic circuits, guiding behavioral output through its position as an excitatory relay of the striatal indirect pathway and its direct connections with the cortex. There have been conflicting results regarding the role of the STN in addiction-related behavior to psychostimulants, and little is known with respect to the role of STN afferents. To address this, we used viral vectors to express DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) in the STN of rats in order to bidirectionally manipulate STN activity during the induction of amphetamine sensitization.
View Article and Find Full Text PDFSubstance use disorder (SUD) is a chronic, relapsing disease with a highly multifaceted pathology that includes (but is not limited to) sensitivity to drug-associated cues, negative affect, and motivation to maintain drug consumption. SUDs are highly prevalent, with 35 million people meeting criteria for SUD. While drug use and addiction are highly studied, most investigations of SUDs examine drug use in isolation, rather than in the more prevalent context of comorbid substance histories.
View Article and Find Full Text PDFOpioid addiction has been declared a public health emergency, with fatal overdoses following relapse reaching epidemic proportions and disease-associated costs continuing to escalate. Relapse is often triggered by re-exposure to drug-associated cues, and though the neural substrates responsible for relapse in vulnerable individuals remains ambiguous, the nucleus accumbens (NAc) has been shown to play a central role. NAc direct and indirect pathway medium spiny neurons (dMSNs and iMSNs) can have oppositional control over reward-seeking and associative learning and are critically involved in reinstatement of psychostimulant-seeking.
View Article and Find Full Text PDFCues in the environment can elicit complex emotional states, and thereby maladaptive behavior, as a function of their ascribed value. Here we capture individual variation in the propensity to attribute motivational value to reward-cues using the sign-tracker/goal-tracker animal model. Goal-trackers attribute predictive value to reward-cues, and sign-trackers attribute both predictive and incentive value.
View Article and Find Full Text PDFRationale: Comorbid use of heroin and cocaine is highly prevalent among drug users and can greatly increase addiction risk. Nonetheless, little is known regarding how a multi-drug history impacts motivation and cue responsivity to individual drugs.
Objective: We used behavioral-economic procedures to examine motivation to maintain drug consumption and tests of drug-seeking to drug-associated cues to assess sensitivity to heroin and cocaine-associated cues in rats that had a self-administration history of heroin, cocaine, or both drugs.
Food intake is essential for survival, but maladaptive patterns of intake, possibly encoded by a preexisting vulnerability coupled with the influence of environmental variables, can modify the reward value of food. Impulsivity, a predisposition toward rapid unplanned reactions to stimuli, is one of the multifaceted determinants underlying the etiology of dysregulated eating and its evolving pathogenesis. The medial prefrontal cortex (mPFC) is a major neural director of reward-driven behavior and impulsivity.
View Article and Find Full Text PDFAttention deficit hyperactivity disorder (ADHD) is now among the most commonly diagnosed chronic psychological dysfunctions of childhood. By varying estimates, it has increased by 30% in the past 20 years. Environmental factors that might explain this increase have been explored.
View Article and Find Full Text PDFAddiction to drugs such as cocaine is marked by cycles of compulsive drug-taking and drug-seeking behavior. Although the transition to addiction is thought to recruit neural processes in dorsal striatum, little is known regarding the role of dorsal striatal projections to the substantia nigra (i.e.
View Article and Find Full Text PDFDrug addiction is a chronic disease that is shaped by alterations in neuronal function within the cortical-basal ganglia-thalamic circuit. However, our understanding of how this circuit regulates drug-seeking remains incomplete, and relapse rates remain high. The midline thalamic nuclei are an integral component of the cortical-basal ganglia-thalamic circuit and are poised to mediate addiction behaviors, including relapse.
View Article and Find Full Text PDFPharmacol Biochem Behav
November 2018
Addiction to cocaine is a chronic disease characterized by persistent drug-taking and drug-seeking behaviors, and a high likelihood of relapse. The prefrontal cortex (PFC) has long been implicated in the development of cocaine addiction, and relapse. However, the PFC is a heterogeneous structure, and understanding the role of PFC subdivisions, cell types and afferent/efferent connections is critical for gaining a comprehensive picture of the contribution of the PFC in addiction-related behaviors.
View Article and Find Full Text PDFEarly life experiences affect the formation of neuronal networks, which can have a profound impact on brain function and behavior later in life. Previous work has shown that mice exposed to excessive sensory stimulation during development are hyperactive and novelty seeking, and display impaired cognition compared with controls. In this study, we addressed the issue of whether excessive sensory stimulation during development could alter behaviors related to addiction and underlying circuitry in CD-1 mice.
View Article and Find Full Text PDFThe medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) are both integral components of the corticobasal ganglia-thalamic circuitry that regulates addiction-related behaviors. However, the role of afferent inputs from mPFC to NAc in these behaviors is unclear. To address this, we used a Cre-recombinase-dependent viral vector approach to express G(i/o)-coupled DREADDs (designer receptors exclusively activated by designer drugs) selectively in mPFC neurons projecting to the NAc and examined the consequences of attenuating activity of these neurons on the induction of amphetamine sensitization and on drug taking and drug seeking during cocaine self-administration.
View Article and Find Full Text PDFDrug addiction is characterized by compulsive drug-seeking and drug-taking, and a high propensity for relapse. Although the brain regions involved in regulating addiction processes have long been identified, the ways in which individual cell types govern addiction behaviors remain elusive. New technologies for modulating the activity of defined cell types have recently emerged that are allowing us to address these important questions.
View Article and Find Full Text PDFThe dorsal striatum has been implicated in reward-based decision making, but the role played by specific striatal circuits in these processes is essentially unknown. Using cell phenotype-specific viral vectors to express engineered G-protein-coupled DREADD (designer receptors exclusively activated by designer drugs) receptors, we enhanced Gi/o- or Gs-protein-mediated signaling selectively in direct-pathway (striatonigral) neurons of the dorsomedial striatum in Long-Evans rats during discrete periods of training of a high versus low reward-discrimination task. Surprisingly, these perturbations had no impact on reward preference, task performance, or improvement of performance during training.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2012
Dorsal striatum is important for the development of drug addiction; however, a precise understanding of the roles of striatopallidal (indirect) and striatonigral (direct) pathway neurons in regulating behaviors remains elusive. Using viral-mediated expression of an engineered G protein-coupled receptor (hM(4)D), we found that activation of hM(4)D receptors with clozapine-N-oxide (CNO) potently reduced striatal neuron excitability. When hM(4)D receptors were selectively expressed in either direct or indirect pathway neurons, CNO did not change acute locomotor responses to amphetamine, but did alter behavioral plasticity associated with repeated drug treatment.
View Article and Find Full Text PDFBoth serotonin-1B (5-HT(1B)) receptors and stress modulate the behavioral and neurobiological effects of psychostimulant drugs. In order to examine how these factors interact to influence the development of behaviors associated with addiction, we used viral-mediated gene transfer to transiently increase expression of 5-HT(1B) receptors in the nucleus accumbens (NAc) shell along with exposure to repeated mild stress (novelty + saline injection) in rats. Once the viral-mediated increases in gene expression had dissipated, the resulting effects of this 5-HT(1B)/stress pairing on the acute locomotor response to amphetamine and on the development of psychomotor sensitization were examined.
View Article and Find Full Text PDFBackground: Repeated exposure to cocaine produces enduring forms of drug experience-dependent behavioral plasticity, including conditioned place preference (CPP) and psychomotor sensitization, a progressive and persistent increase in cocaine's psychomotor activating effects. Although serotonin-6 receptors (5-HT6Rs) are abundantly expressed in the brain regions thought to underlie these phenomena, such as the nucleus accumbens (NAc), surprisingly little is known about the role of 5-HT6Rs in the rewarding and psychomotor activating effects of cocaine.
Methods: Viral-mediated gene transfer was used to selectively increase 5-HT6R expression in the NAc of rats.
Whether serotonin-1B (5-HT(1B)) receptor activation enhances or diminishes the reinforcing properties of psychostimulants remains unclear. We have previously shown that increased expression of 5-HT(1B) receptors in nucleus accumbens (NAcc) shell neurons sensitized rats to the locomotor-stimulating and rewarding properties of cocaine. In this study we further examined the contribution of 5-HT(1B) receptors on the effect of cocaine under conditions intended to selectively influence either conditioned place preference or avoidance (CPP or CPA, respectively).
View Article and Find Full Text PDFThe ability of cocaine to produce lasting neural adaptations in mesocorticolimbic brain regions is thought to promote drug seeking and facilitate addiction in humans. The Ras-controlled Raf-MEK-ERK protein kinase signaling cascade has been implicated in the behavioral and neurobiological actions of cocaine in animals. However, these pharmacological studies have not been able to determine the specific role of the two predominant isoforms of ERK (ERK1 and ERK2) in these processes.
View Article and Find Full Text PDFThe environmental context in which psychostimulant drugs are experienced influences their ability to induce immediate early genes (IEGs) in the striatum. When given in the home cage amphetamine induces IEGs predominately in striatonigral neurons, but when given in a novel test environment amphetamine also induces IEGs in striatopallidal neurons. The source of the striatopetal projections that regulate the ability of amphetamine to differentially engage these two striatofugal circuits has never been described.
View Article and Find Full Text PDFThe rapid delivery of drugs of abuse to the brain is thought to promote addiction, but why this occurs is unknown. In the present study, we characterized the influence of rate of intravenous cocaine infusion (5-100 sec) on three effects thought to contribute to its addiction liability: its ability to block dopamine (DA) uptake, to activate immediate early gene expression, and to produce psychomotor sensitization. Rapid infusions potentiated the ability of cocaine to block DA reuptake, to induce c-fos and arc mRNA expression, especially in mesocorticolimbic regions, and to produce psychomotor sensitization.
View Article and Find Full Text PDF