Publications by authors named "Susan Lepri"

After leaving the Sun's corona, the solar wind continues to accelerate and cools, but more slowly than expected for a freely expanding adiabatic gas. Alfvén waves are perturbations of the interplanetary magnetic field that transport energy. We use in situ measurements from the Parker Solar Probe and Solar Orbiter spacecraft to investigate a stream of solar wind as it traverses the inner heliosphere.

View Article and Find Full Text PDF

Aldehyde oxidase (AOX) is a molibdo-flavoenzyme that has raised great interest in recent years, since its contribution in xenobiotic metabolism has not always been identified before clinical trials, with consequent negative effects on the fate of new potential drugs. The fundamental role of AOX in metabolizing xenobiotics is also due to the attempt of medicinal chemists to stabilize candidates toward cytochrome P450 activity, which increases the risk for new compounds to be susceptible to AOX nucleophile attack. Therefore, novel strategies to predict the potential liability of new entities toward the AOX enzyme are urgently needed to increase effectiveness, reduce costs, and prioritize experimental studies.

View Article and Find Full Text PDF

Aldehyde oxidase (AOX) is a metabolic enzyme catalyzing the oxidation of aldehyde and aza-aromatic compounds and the hydrolysis of amides, moieties frequently shared by the majority of drugs. Despite its key role in human metabolism, to date only fragmentary information about the chemical features responsible for AOX susceptibility are reported and only "very local" structure-metabolism relationships based on a small number of similar compounds have been developed. This study reports a more comprehensive coverage of the chemical space of structures with a high risk of AOX phase I metabolism in humans.

View Article and Find Full Text PDF
Article Synopsis
  • Phenotypic screens are gaining popularity in drug discovery as they assess cellular changes rather than just interactions with specific proteins.* -
  • The new chemical probe, bisamide (CCT251236), was discovered through these screens and is effective in treating human ovarian carcinoma in lab models.* -
  • Researchers identified pirin as a key target of bisamide, using techniques like structure-activity relationship studies and chemical proteomics to confirm its role.*
View Article and Find Full Text PDF

The NorA efflux pump is a potential drug target for reversal of resistance to selected antibacterial agents, and recently we described indole-based inhibitor candidates. Herein we report a second class of inhibitors derived from them but with significant differences in shape and size. In particular, compounds 13 and 14 are very potent inhibitors in that they demonstrated the lowest IC values (2 μM) ever observed among all indole-based compounds we have evaluated.

View Article and Find Full Text PDF

Bosentan, the first-in-class drug used in treatment of pulmonary arterial hypertension, is principally metabolized by the cytochromes P450, and it is responsible for cytochromes induction and drug-drug interaction events with moderate to severe consequences. A strategy to reduce drug-drug interactions consists of increasing the metabolic stability of the perpetrator, and fluorinated analogues are often designed to block the major sites of metabolism. In this paper bosentan analogues were synthesized, and their metabolism and biological activity were evaluated.

View Article and Find Full Text PDF

Antibiotic resistance represents a worldwide concern, especially regarding the outbreak of methicillin-resistant Staphylococcus aureus, a common cause for serious skin and soft tissues infections. A major contributor to Staphylococcus aureus antibiotic resistance is the NorA efflux pump, which is able to extrude selected antibacterial drugs and biocides from the membrane, lowering their effective concentrations. Thus, the inhibition of NorA represents a promising and challenging strategy that would allow recycling of substrate antimicrobial agents.

View Article and Find Full Text PDF

Bisphosphonates are the most important class of antiresorptive agents used against osteoclast-mediated bone loss, and, more recently, in oncology. These compounds have high affinity for calcium ions (Ca(2+)) and therefore target bone mineral, where they appear to be internalized selectively by bone-resorbing osteoclasts and inhibit osteoclast function. They are extensively used in healthcare, however they are affected by severe side effects; pharmacological properties of bisphosphonates depend on their molecular structure, which is frequently the cause of poor intestinal adsorption and low distribution.

View Article and Find Full Text PDF

Long-range bonding interactions were evaluated using variable-temperature NMR spectroscopy and suitable 2'-CH2X-substituted phenylpyridines (X = Me, NMe2, OMe, F). It was found that the arylpyridyl rotational barriers were lower when electronegative atoms were bound to the α carbon of the 2' moiety. This effect was ascribed to a stabilizing interaction in the transition state due to the lone pair of the heterocyclic nitrogen with the α carbon.

View Article and Find Full Text PDF

The role played by the C*-H based modes (C* being the chiral carbon atom) and the large amplitude motions in the vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra is investigated. The example of an adduct of dimethyl fumarate and anthracene, i.e.

View Article and Find Full Text PDF

Influenza virus infections represent a serious concern to public health, being characterized by high morbidity and significant mortality. To date, compounds targeting the viral ion-channel M2 or the viral neuraminidase are the drugs available for treatment of influenza, but the emergence of drug-resistant viral mutants renders the search for novel targets and their possible inhibitors a major priority. Recently, we demonstrated that the viral RNA-dependent RNA polymerase (RdRP) complex can be an optimal target of protein-protein disruption by small molecules, with thiophene-3-carboxamide derivatives emerging as promising candidates for the development of new anti-influenza drugs with broad-spectrum activity.

View Article and Find Full Text PDF

Novel, optically pure 2-{4-methyl[2]paracyclo[2](5,8)quinolinophan-2-yl}-4-aryl/alkyloxazolines (QUIPHANOX) exhibiting both planar and central chirality have been prepared by reacting (Rp)- and (Sp)-2-cyano-4-methyl[2]paracyclo[2](5,8)quinolinophane with 2-aryl/alkyl-2-aminoethanols. The reaction of each of the above N,N-ligands with [Ru(η(6)-p-cymene)Cl2]2 in methanol, in the presence of either NH4PF6 or NaBPh4, gave the corresponding half-sandwich [(η(6)-p-cymene)Ru(QUIPHANOX)Cl](+)Y(-), (Y(-) = PF6(-), BPh4(-)) as stable complex salts exhibiting planar and carbon- and metal-centered chirality. The unknown absolute configuration (AC) at the metal was determined by (1)H NMR and by theoretical calculations of electronic circular dichroism (ECD) spectra and subsequently confirmed by crystallographic X-ray analysis.

View Article and Find Full Text PDF

The free energies of activation for the aryl-aryl rotation of 17 biphenyl derivatives, bearing a heavy heteroatom (S, Se, Te, P, Si, Sn) as ortho substituent, have been measured by variable temperature NMR. These numbers, so called B values, represent a meaningful measure of the steric hindrance exerted by the selected substituents. DFT computations match quite satisfactorily the experimental barriers and the ground state geometries as well (determined, in two cases, by X-ray diffraction).

View Article and Find Full Text PDF