Publications by authors named "Susan L Travis"

Singleton detection mode is a state in which spatial attention is set to prioritize any objects that differ from all other objects present on any feature dimension. Relatively little research has been devoted to confirming the consequences such a search mode has for stimulus processing. It is often implied that when observers employ singleton detection mode, all singletons capture attention equally, and when observers search for a single feature, only that feature captures attention.

View Article and Find Full Text PDF

The article [Title], written by [AuthorNames], was originally published electronically on the publisher's internet portal (currently SpringerLink) on [30 October 2018] with open access.

View Article and Find Full Text PDF

An observer's current goals can influence the processing of visual stimuli. Such influences can work to enhance goal-relevant stimuli and suppress goal-irrelevant stimuli. Here, we combined behavioral testing and electroencephalography (EEG) to examine whether such enhancement and suppression effects arise even when the stimuli are masked from awareness.

View Article and Find Full Text PDF

The relationship between visual attention and conscious perception has been the subject of debate across a number of fields, including philosophy, psychology, and neuroscience. Whereas some researchers view attention and awareness as inextricably linked, others propose that the two are supported by distinct neural mechanisms that can be fully dissociated. In a pioneering study, van Boxtel, Tsuchiya, and Koch (2010b) reported evidence for a dissociation between attention and conscious perception using a perceptual adaptation task in which participants' perceptual awareness and visual attention were manipulated independently.

View Article and Find Full Text PDF

The visual world is typically too complex to permit full apprehension of its content from a single fixation. Humans therefore use visual search to direct attention and eye movements to locations or objects of interest in cluttered scenes. Psychophysical investigations have revealed that observers can select target elements from within an array of distractors on the basis of their spatial location or simple features, such as color.

View Article and Find Full Text PDF

The human visual system receives more information than can be consciously processed. To overcome this capacity limit, we employ attentional mechanisms to prioritize task-relevant (target) information over less relevant (distractor) information. Regularities in the environment can facilitate the allocation of attention, as demonstrated by the spatial contextual cueing paradigm.

View Article and Find Full Text PDF