The use of circulating cell-free DNA (cfDNA) as a biomarker in transplant recipients offers advantages over invasive tissue biopsy as a quantitative measure for detection of transplant rejection and immunosuppression optimization. However, the fraction of donor-derived cfDNA (dd-cfDNA) in transplant recipient plasma is low and challenging to quantify. Previously reported methods to measure dd-cfDNA require donor and recipient genotyping, which is impractical in clinical settings and adds cost.
View Article and Find Full Text PDFPurpose: Fractionated radiation therapy is frequently used to treat prostate cancer with an underlying assumption that each daily dose of ionizing radiation (IR) results in equal cell killing. We used three human prostate cancer cell lines to evaluate how survival after a single 2-Gy dose may predict responses after daily repeated 2-Gy exposures.
Methods And Materials: LNCaP, CWR22R, and PC3 cells were used in these studies.
External beam radiation therapy is an effective therapy for localized prostate cancer, although failures occur at high rates. One variable that may affect the radiosensitivity of prostate tumor cells is their p53 status because this gene controls radiation-induced cell cycle arrest, apoptosis, and the repair of DNA damage. Using a system in which p53 function was conditionally restored to p53-null PC3 prostate cancer cells by stable transfection with a human temperature-sensitive p53 mutant allele, we tested the hypothesis that functional p53 increases cell cycle arrest and contributes to increased clonogenic survival after ionizing radiation (IR) of prostate carcinoma cells.
View Article and Find Full Text PDFCancer Biother Radiopharm
December 2002
Irradiation of the prostate, delivered as external beam radiation therapy (EBRT), is currently one of the few treatment options for localized prostate cancer. While it is relatively effective, the failure rate still remains unacceptably high with a 5-year biochemical failure rate of 10-40%. Utilizing genetically engineered LNCaP prostate cancer sublines that either overexpress Bcl2 (LNCaP/S22-d) or have down-regulated Bcl2 (LNCaP/AS17-f) we investigated the influence of this antiapoptotic protein on clonogenic survival following radiation.
View Article and Find Full Text PDF