Publications by authors named "Susan L Ackerman"

Notch signaling guides vascular development and function by regulating diverse endothelial cell behaviors, including migration, proliferation, vascular density, endothelial junctions, and polarization in response to flow. Notch proteins form transcriptional activation complexes that regulate endothelial gene expression, but few of the downstream effectors that enable these phenotypic changes have been characterized in endothelial cells, limiting our understanding of vascular Notch activities. Using an unbiased screen of translated mRNA rapidly regulated by Notch signaling, we identified novel in vivo targets of Notch signaling in neonatal mouse brain endothelium, including UNC5B, a member of the netrin family of angiogenic-regulatory receptors.

View Article and Find Full Text PDF

Defects in tRNA biogenesis are associated with multiple neurological disorders, yet our understanding of these diseases has been hampered by an inability to determine tRNA expression in individual cell types within a complex tissue. Here, we developed a mouse model in which RNA polymerase III is conditionally epitope tagged in a Cre-dependent manner, allowing us to accurately profile tRNA expression in any cell type in vivo. We investigated tRNA expression in diverse nervous system cell types, revealing dramatic heterogeneity in the expression of tRNA genes between populations.

View Article and Find Full Text PDF

Transcription factors play vital roles in neuron development; however, little is known about the role of these proteins in maintaining neuronal homeostasis. Here, we show that the transcription factor RREB1 (Ras-responsive element-binding protein 1) is essential for neuron survival in the mammalian brain. A spontaneous mouse mutation causing loss of a nervous system-enriched transcript is associated with progressive loss of cerebellar Purkinje cells and ataxia.

View Article and Find Full Text PDF

Translational readthrough of UGA stop codons by selenocysteine-specific tRNA (tRNASec) enables the synthesis of selenoproteins. Seryl-tRNA synthetase (SerRS) charges tRNASec with serine, which is modified into selenocysteine and delivered to the ribosome by a designated elongation factor (eEFSec in eukaryotes). Here we found that components of the human selenocysteine incorporation machinery (SerRS, tRNASec, and eEFSec) also increased translational readthrough of non-selenocysteine genes, including VEGFA, to create C-terminally extended isoforms.

View Article and Find Full Text PDF

Blood-brain barrier (BBB) integrity is critical for proper function of the central nervous system (CNS). Here, we show that the endothelial Unc5B receptor controls BBB integrity by maintaining Wnt/β-catenin signaling. Inducible endothelial-specific deletion of Unc5B in adult mice leads to BBB leak from brain capillaries that convert to a barrier-incompetent state with reduced Claudin-5 and increased PLVAP expression.

View Article and Find Full Text PDF

SignificanceUnderstanding and treating neurological disorders are global priorities. Some of these diseases are engendered by mutations that cause defects in the cellular synthesis of transfer RNAs (tRNAs), which function as adapter molecules that translate messenger RNAs into proteins. During tRNA biogenesis, ribonuclease P catalyzes removal of the transcribed sequence upstream of the mature tRNA.

View Article and Find Full Text PDF

Homozygous mutation of the RNA kinase (cleavage factor polyribonucleotide kinase subunit 1) causes pontocerebellar hypoplasia type 10 (PCH10), a pediatric neurodegenerative disease. CLP1 is associated with the transfer RNA (tRNA) splicing endonuclease complex and the cleavage and polyadenylation machinery, but its function remains unclear. We generated two mouse models of PCH10: one homozygous for the disease-associated mutation, R140H, and one heterozygous for this mutation and a null allele.

View Article and Find Full Text PDF

Translation-dependent quality control pathways such as no-go decay (NGD), non-stop decay (NSD), and nonsense-mediated decay (NMD) govern protein synthesis and proteostasis by resolving non-translating ribosomes and preventing the production of potentially toxic peptides derived from faulty and aberrant mRNAs. However, how translation is altered and the in vivo defects that arise in the absence of these pathways are poorly understood. Here, we show that the NGD/NSD factors and are critical in mice for cerebellar neurogenesis but expendable for survival of these neurons after development.

View Article and Find Full Text PDF

During mRNA translation, tRNAs are charged by aminoacyl-tRNA synthetases and subsequently used by ribosomes. A multi-enzyme aminoacyl-tRNA synthetase complex (MSC) has been proposed to increase protein synthesis efficiency by passing charged tRNAs to ribosomes. An alternative function is that the MSC repurposes specific synthetases that are released from the MSC upon cues for functions independent of translation.

View Article and Find Full Text PDF

Ribosome-associated quality control pathways respond to defects in translational elongation to recycle arrested ribosomes and degrade aberrant polypeptides and mRNAs. Loss of a tRNA gene leads to ribosomal pausing that is resolved by the translational GTPase GTPBP2, and in its absence causes neuron death. Here, we show that loss of the homologous protein GTPBP1 during tRNA deficiency in the mouse brain also leads to codon-specific ribosome pausing and neurodegeneration, suggesting that these non-redundant GTPases function in the same pathway to mitigate ribosome pausing.

View Article and Find Full Text PDF

The mammalian genome has hundreds of nuclear-encoded tRNAs, but the contribution of individual tRNA genes to cellular and organismal function remains unknown. Here, we demonstrate that mutations in a neuronally enriched arginine tRNA, n-Tr20, increased seizure threshold and altered synaptic transmission. n-Tr20 expression also modulated seizures caused by an epilepsy-linked mutation in Gabrg2, a gene encoding a GABA receptor subunit.

View Article and Find Full Text PDF

The loss of peroxisomal function has been implicated in many neurodegenerative diseases, yet the underlying molecular mechanisms are poorly understood. In this issue of Neuron, Chung et al. (2020) demonstrate that gain- and loss-of-function mutations in the peroxisomal acyl-CoA oxidase 1 (ACOX1) gene cause neurodegeneration via distinct molecular pathways in glia.

View Article and Find Full Text PDF

In the Fig. 3b western blot of this Article, 'Myc-AlaRS' in row one should have been 'Myc-AAD Aars', 'AlaRS' in row two should have been 'Aars' and 'ANKRD16' in row four should have been 'Ankrd16'. In Fig.

View Article and Find Full Text PDF

Editing domains of aminoacyl tRNA synthetases correct tRNA charging errors to maintain translational fidelity. A mutation in the editing domain of alanyl tRNA synthetase (AlaRS) in Aars mutant mice results in an increase in the production of serine-mischarged tRNA and the degeneration of cerebellar Purkinje cells. Here, using positional cloning, we identified Ankrd16, a gene that acts epistatically with the Aars mutation to attenuate neurodegeneration.

View Article and Find Full Text PDF

Errors during mRNA translation can lead to a reduction in the levels of functional proteins and an increase in deleterious molecules. Advances in next-generation sequencing have led to the discovery of rare genetic disorders, many caused by mutations in genes encoding the mRNA translation machinery, as well as to a better understanding of translational dynamics through ribosome profiling. We discuss here multiple neurological disorders that are linked to errors in tRNA aminoacylation and ribosome decoding.

View Article and Find Full Text PDF

Dynamic regulation of mRNA translation initiation and elongation is essential for the survival and function of neural cells. Global reductions in translation initiation resulting from mutations in the translational machinery or inappropriate activation of the integrated stress response may contribute to pathogenesis in a subset of neurodegenerative disorders. Aberrant proteins generated by non-canonical translation initiation may be a factor in the neuron death observed in the nucleotide repeat expansion diseases.

View Article and Find Full Text PDF

Ribosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of C57BL/6J-Gtpbp2(nmf205)(-/-) mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNA(Arg)UCU tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2α (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway.

View Article and Find Full Text PDF

Boundary cap cells (BCC) are a transient, neural-crest-derived population found at the motor exit point (MEP) and dorsal root entry zone (DREZ) of the embryonic spinal cord. These cells contribute to the central/peripheral nervous system (CNS/PNS) boundary, and in their absence neurons and glia from the CNS migrate into the PNS. We found Netrin5 (Ntn5), a previously unstudied member of the netrin gene family, to be robustly expressed in BCC.

View Article and Find Full Text PDF

During neural circuit assembly, axonal growth cones are exposed to multiple guidance signals at trajectory choice points. While axonal responses to individual guidance cues have been extensively studied, less is known about responses to combination of signals and underlying molecular mechanisms. Here, we studied the convergence of signals directing trajectory selection of spinal motor axons entering the limb.

View Article and Find Full Text PDF

The structural microtubule-associated proteins (MAPs) are critical for the organization of neuronal microtubules (MTs). Microtubule-associated protein 1A (MAP1A) is one of the most abundantly expressed MAPs in the mammalian brain. However, its in vivo function remains largely unknown.

View Article and Find Full Text PDF

Folding of transmembrane and secretory proteins occurs in the lumen of the endoplasmic reticulum (ER) before transportation to the cell surface and is monitored by the unfolded protein response (UPR) signaling pathway. The accumulation of unfolded proteins in the ER activates the UPR that restores ER homeostasis by regulating gene expression that leads to an increase in the protein-folding capacity of the ER and a decrease in the ER protein-folding load. However, prolonged UPR activity has been associated with cell death in multiple pathological conditions, including neurodegeneration.

View Article and Find Full Text PDF

Misfolded proteins are an emerging hallmark of cardiac diseases. Although some misfolded proteins, such as desmin, are associated with mutations in the genes encoding these disease-associated proteins, little is known regarding more general mechanisms that contribute to the generation of misfolded proteins in the heart. Reduced translational fidelity, caused by a hypomorphic mutation in the editing domain of alanyl-tRNA synthetase (AlaRS), resulted in accumulation of misfolded proteins in specific mouse neurons.

View Article and Find Full Text PDF

In higher eukaryotes, transfer RNAs (tRNAs) with the same anticodon are encoded by multiple nuclear genes, and little is known about how mutations in these genes affect translation and cellular homeostasis. Similarly, the surveillance systems that respond to such defects in higher eukaryotes are not clear. Here, we discover that loss of GTPBP2, a novel binding partner of the ribosome recycling protein Pelota, in mice with a mutation in a tRNA gene that is specifically expressed in the central nervous system causes ribosome stalling and widespread neurodegeneration.

View Article and Find Full Text PDF

The pyramidal neurons of the mammalian neocortex form two major types of long-range connections-corticocortical and cortico-subcortical. The transcription factors Satb2 and Ctip2 are critical regulators of neuronal cell fate that control interhemispheric versus corticofugal connections respectively. Here, we investigate the axon guidance molecules downstream of Satb2 and Ctip2 that establish these connections.

View Article and Find Full Text PDF