Human aromatase (CYP19A1), the cytochrome P450 enzyme responsible for conversion of androgens to estrogens, was incorporated into lipoprotein nanodiscs (NDs) and interrogated by small angle X-ray and neutron scattering (SAXS/SANS). CYP19A1 was associated with the surface and centered at the edge of the long axis of the ND membrane. In the absence of the N-terminal anchor, the amphipathic A'- and G'-helices were predominately buried in the lipid head groups, with the possibly that their hydrophobic side chains protrude into the hydrophobic, aliphatic tails.
View Article and Find Full Text PDFIntroduction: Trusted research environments (TREs) provide secure access to very sensitive data for research. All TREs operate manual checks on outputs to ensure there is no residual disclosure risk. Machine learning (ML) models require very large amount of data; if this data is personal, the TRE is a well-established data management solution.
View Article and Find Full Text PDFThe mRNA technology has emerged as a rapid modality to develop vaccines during pandemic situations with the potential to protect against endemic diseases. The success of mRNA in producing an antigen is dependent on the ability to deliver mRNA to the cells using a vehicle, which typically consists of a lipid nanoparticle (LNP). Self-amplifying mRNA (SAM) is a synthetic mRNA platform that, besides encoding for the antigen of interest, includes the replication machinery for mRNA amplification in the cells.
View Article and Find Full Text PDFMRI, Imaging Sequences, Ultrasound, Mammography, CT, Angiography, Conventional Radiography Published under a CC BY 4.0 license. See also the commentary by Whitman and Vining in this issue.
View Article and Find Full Text PDFStructural details of a genome packaged in a viral capsid are essential for understanding how the structural arrangement of a viral genome in a capsid controls its release dynamics during infection, which critically affects viral replication. We previously found a temperature-induced, solid-like to fluid-like mechanical transition of packaged λ-genome that leads to rapid DNA ejection. However, an understanding of the structural origin of this transition was lacking.
View Article and Find Full Text PDFWe report a generalized platform for synthesizing a polymer nanoweb with a high specific surface area via a bicellar template, composed of 1,2-dipalmitoyl phosphocholine (DPPC), 1,2-dihexanoyl phosphocholine (DHPC), and 1,2-dipalmitoyl phosphoglycerol (DPPG). The pristine bicelle (in the absence of monomer or polymer) yields a variety of well-defined structures, including disc, vesicle, and perforated lamella. The addition of styrene monomers in the mixture causes bicelles to transform into lamellae.
View Article and Find Full Text PDFThe present review summarizes the use of differential scanning calorimetry (DSC) and scattering techniques in the context of protein formulation design and characterization. The scattering techniques include wide angle X-ray diffractometry (XRD), small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). While DSC is valuable for understanding thermal behavior of the excipients, XRD provides critical information about physical state of solutes during freezing, annealing and in the final lyophile.
View Article and Find Full Text PDFMethods Enzymol
November 2022
Small angle neutron scattering (SANS) along with contrast variation (CV) can provide key information that is used to determine the shape and structure of biological complexes in solution. The successful SANS CV experiment is usually a result of judicious planning, careful execution and meticulous scrutiny of the resultant SANS data. A workflow for planning, executing and, importantly, assessing the validity of SANS CV data is presented here, along with tips to follow in order to perform a successful SANS CV experiment.
View Article and Find Full Text PDFThrough an expansive international effort that involved data collection on 12 small-angle X-ray scattering (SAXS) and four small-angle neutron scattering (SANS) instruments, 171 SAXS and 76 SANS measurements for five proteins (ribonuclease A, lysozyme, xylanase, urate oxidase and xylose isomerase) were acquired. From these data, the solvent-subtracted protein scattering profiles were shown to be reproducible, with the caveat that an additive constant adjustment was required to account for small errors in solvent subtraction. Further, the major features of the obtained consensus SAXS data over the q measurement range 0-1 Å are consistent with theoretical prediction.
View Article and Find Full Text PDFProtein structural changes during freezing and subsequent thawing are of great importance to a variety of biopharmaceutical applications. In this work, we studied the influence of non-ionic surfactants (polysorbate 20 and poloxamer 188) on protein structural changes during freeze and thaw using lysozyme as a model protein. Small-angle neutron scattering was employed to characterize protein structures in both liquid and frozen solution states.
View Article and Find Full Text PDFCurr Opin Struct Biol
June 2022
Small-angle neutron scattering (SANS) has been a beneficial tool for studying the structure of biological macromolecules in solution for several decades. Continued improvements in sample preparation techniques, including deuterium labeling, neutron instrumentation and complementary techniques such as small-angle x-ray scattering (SAXS), cryo-EM, NMR and x-ray crystallography, along with the availability of more powerful structure prediction algorithms and computational resources has made SANS more important than ever as a means to obtain unique information on the structure of biological complexes in solution. In particular, the contrast variation (CV) technique, which requires a large commitment in both sample preparation and measurement time, has become more practical with the advent of these improved resources.
View Article and Find Full Text PDFIn this study, we used sodium chloride (NaCl) to extensively modulate non-specific protein-protein interactions (PPI) of a humanized anti-streptavidin monoclonal antibody class 2 molecule (ASA-IgG2). The changes in PPI with varying NaCl () and monoclonal antibody (mAb) concentration () were assessed using the diffusion interaction parameter and second virial coefficient measured from solutions with low to moderate . The effective structure factor measured from concentrated mAb solutions using small-angle X-ray and neutron scattering (SAXS/SANS) was also used to characterize the PPI.
View Article and Find Full Text PDFPeptide nucleic acids (PNAs) are nucleic acid analogs with superior hybridization properties and enzymatic stability than deoxyribonucleic acid (DNA). In addition to gene targeting applications, PNAs have garnered significant attention as bio-polymer due to the Watson-Crick -based molecular recognition and flexibility of synthesis. Here, we engineered PNA amphiphiles using chemically modified gamma PNA (8 mer in length) containing hydrophilic diethylene glycol units at the gamma position and covalently conjugated lauric acid (C12) as a hydrophobic moiety.
View Article and Find Full Text PDFLipid nanodiscs can be used to solubilize functional membrane proteins (MPs) in nativelike environments. Thus, they are promising reagents that have been proven useful to characterize MPs. Both protein and non-protein molecular belts have shown promise to maintain the structural integrity of MPs in lipid nanodiscs.
View Article and Find Full Text PDFThe aims of this work were to evaluate the effect of freezing and thawing stresses on lactate dehydrogenase (LDH) stability under three conditions. (i) In a solution buffered with sodium phosphate (NaP; 10 and 100 mM). The selective crystallization of disodium hydrogen phosphate during freezing caused a pronounced pH shift.
View Article and Find Full Text PDFLipidic cubic phase (LCP) crystallization methods have been essential in obtaining crystals of certain membrane proteins, particularly G-protein-coupled receptors. LCP crystallization is generally optimized across a large number of potential variables, one of which may be the choice of the solubilizing detergent. A better fundamental understanding of the behavior of detergents in the LCP may guide and simplify the detergent selection process.
View Article and Find Full Text PDFPhase transitions of poloxamer 188 (P188) aqueous solutions at freezing temperatures are investigated using small-angle neutron scattering (SANS) and small- and wide-angle X-ray scatterings (SAXS and WAXS). It is shown that P188 solution (10%) undergoes the following sequence of phase transitions during cooling from 25 to -150 °C: micelle solution, solution of monomers, two-phase mixture of liquid crystalline mesophase + ice, and finally crystalline P188 + ice. Formation of the liquid crystalline phase during freezing is likely to be triggered by water freezing to ice and corresponding freeze concentration of the remaining solution.
View Article and Find Full Text PDFThe respiratory syncytial virus (RSV) fusion (F) protein/polysorbate 80 (PS80) nanoparticle vaccine is the most clinically advanced vaccine for maternal immunization and protection of newborns against RSV infection. It is composed of a near-full-length RSV F glycoprotein, with an intact membrane domain, formulated into a stable nanoparticle with PS80 detergent. To understand the structural basis for the efficacy of the vaccine, a comprehensive study of its structure and hydrodynamic properties in solution was performed.
View Article and Find Full Text PDFThe periplasmic chaperone network ensures the biogenesis of bacterial outer membrane proteins (OMPs) and has recently been identified as a promising target for antibiotics. SurA is the most important member of this network, both due to its genetic interaction with the β-barrel assembly machinery complex as well as its ability to prevent unfolded OMP (uOMP) aggregation. Using only binding energy, the mechanism by which SurA carries out these two functions is not well-understood.
View Article and Find Full Text PDFAim: To enable a world-leading research dataset of routinely collected clinical images linked to other routinely collected data from the whole Scottish national population. This includes more than 30 million different radiological examinations from a population of 5.4 million and >2 PB of data collected since 2010.
View Article and Find Full Text PDFSurA is thought to be the most important periplasmic chaperone for outer membrane protein (OMP) biogenesis. Its structure is composed of a core region and two peptidylprolyl isomerase domains, termed P1 and P2, connected by flexible linkers. As such these three independent folding units are able to adopt a number of distinct spatial positions with respect to each other.
View Article and Find Full Text PDFSmall-angle neutron scattering (SANS) measurements were pursued to study human vitronectin, a protein found in tissues and the circulation that regulates cell adhesion/migration and proteolytic cascades that govern hemostasis and pericellular proteolysis. Many of these functions occur via interactions with its binding partner, plasminogen activator inhibitor-1 (PAI-1), the chief inhibitor of proteases that lyse and activate plasminogen. We focused on a region of vitronectin that remains uncharacterized from previous X-ray scattering, nuclear magnetic resonance, and computational modeling approaches and which we propose is involved in binding to PAI-1.
View Article and Find Full Text PDFPost-translational substrate modification with ubiquitin is essential for eukaryotic cellular signaling. Polymeric ubiquitin chains are assembled with specific architectures, which convey distinct signaling outcomes depending on the linkages involved. Recently, branched K11/K48-linked polyubiquitins were shown to enhance proteasomal degradation during mitosis.
View Article and Find Full Text PDF