Publications by authors named "Susan K Fischer"

Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues.

View Article and Find Full Text PDF

Rationale: Muscle carnitine palmitoyltransferase I is predominant in the heart, but the liver isoform (liver carnitine palmitoyltransferase I [L-CPT1]) is elevated in hearts with low long chain fatty acid oxidation, such as fetal and hypertrophied hearts.

Objective: This work examined the effect of acute L-CPT1 expression on the regulation of palmitate oxidation and energy metabolism in intact functioning rat hearts for comparison with findings in hypertrophied hearts.

Methods And Results: L-CPT1 was expressed in vivo in rat hearts by coronary perfusion of Adv.

View Article and Find Full Text PDF

Aims: Although a major mechanism for cardioprotection is altered metabolism, little is known regarding metabolic changes in ischaemic preconditioning and subsequent ischaemia. Our objective was to examine the effects of the second window of preconditioning (SWOP), the delayed phase of preconditioning against infarction and stunning, on long-chain free fatty acid (LCFA) oxidation during ischaemia in chronically instrumented, conscious pigs.

Methods And Results: We studied three groups: (i) normal baseline perfusion (n = 5); (ii) coronary artery stenosis (CAS; n = 5); (iii) CAS 24 h following 2 × 10 min coronary occlusions and 10 min reperfusion (n = 7).

View Article and Find Full Text PDF

Changes in metabolic and myofilament phenotypes coincide in developing hearts. Posttranslational modification of sarcomere proteins influences contractility, affecting the energetic cost of contraction. However, metabolic adaptations to sarcomeric phenotypes are not well understood, particularly during pathophysiological stress.

View Article and Find Full Text PDF