Duchenne muscular dystrophy (DMD) is an X-linked recessive disease that affects 1:5,000 live male births and is characterized by muscle wasting. By the age of 13 years, affected individuals are often wheelchair bound and suffer from respiratory and cardiac failure, which results in premature death. Although the administration of corticosteroids and ventilation can relieve the symptoms and extend the patients' lifespan, currently no cure exists for DMD.
View Article and Find Full Text PDFBackground: Spinal muscular atrophy (SMA) is caused by genetic defects in the survival motor neuron 1 (SMN1) gene that lead to SMN deficiency. Different SMN-restoring therapies substantially prolong survival and function in transgenic mice of SMA. However, these therapies do not entirely prevent muscle atrophy and restore function completely.
View Article and Find Full Text PDFOculopharyngeal muscular dystrophy (OPMD) is a rare late onset genetic disease leading to ptosis, dysphagia and proximal limb muscles at later stages. A short abnormal (GCN) triplet expansion in the polyA-binding protein nuclear 1 (PABPN1) gene leads to PABPN1-containing aggregates in the muscles of OPMD patients. Here we demonstrate that treating mice with guanabenz acetate (GA), an FDA-approved antihypertensive drug, reduces the size and number of nuclear aggregates, improves muscle force, protects myofibers from the pathology-derived turnover and decreases fibrosis.
View Article and Find Full Text PDFA short abnormal polyalanine expansion in the polyadenylate-binding protein nuclear-1 (PABPN1) protein causes oculopharyngeal muscular dystrophy (OPMD). Mutated PABPN1 proteins accumulate as insoluble intranuclear aggregates in muscles of OPMD patients. While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice have been established, the molecular mechanisms which trigger pathological defects in OPMD and the role of aggregates remain to be determined.
View Article and Find Full Text PDFIn preclinical models for Duchenne muscular dystrophy, dystrophin restoration during adeno-associated virus (AAV)-U7-mediated exon-skipping therapy was shown to decrease drastically after six months in treated muscles. This decline in efficacy is strongly correlated with the loss of the therapeutic AAV genomes, probably due to alterations of the dystrophic myofiber membranes. To improve the membrane integrity of the dystrophic myofibers at the time of AAV-U7 injection, mdx muscles were pre-treated with a single dose of the peptide-phosphorodiamidate morpholino (PPMO) antisense oligonucleotides that induced temporary dystrophin expression at the sarcolemma.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD), an X-linked inherited musclewasting disease primarily affecting young boys with prevalence of between1:3,500- 1:5,000, is a rare genetic disease caused by defects in the gene for dystrophin. Dystrophin protein is critical to the stability of myofibers in skeletal and cardiac muscle. There is currently no cure available to ameliorate DMD and/or its patho-physiology.
View Article and Find Full Text PDFThe fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis.
View Article and Find Full Text PDFExpert Opin Biol Ther
February 2014
Introduction: Duchenne muscular dystrophy (DMD) is a lethal X-linked inherited disorder characterised by progressive muscle weakness, wasting and degeneration. Although the gene affected in DMD was identified over 25 years ago, there is still no effective treatment.
Areas Covered: Here we review some of the genetic-based strategies aimed at amelioration of the DMD phenotype.
The emergence of variant fowlpox viruses (FWPVs) and increasing field use of recombinants against avian influenza H5N1 emphasize the need to monitor vaccines and to distinguish them from field strains. Five commercial vaccines, two laboratory viruses and two European field isolates were characterized by PCR and sequencing at 18 loci differing between attenuated FP9 and its pathogenic progenitor. PCR failed to discriminate between the viruses and sequence determination revealed no significant differences at any locus, except for a polymorphic locus encompassed by deletion 24 (9.
View Article and Find Full Text PDFAvipoxvirus infections have been observed in an extensive range of wild, captive and domesticated avian hosts, yet little is known about the genome diversity and host-range specificity of the causative agent(s). Genome-sequence data are largely restricted to Fowlpox virus (FWPV) and Canarypox virus (CNPV), which have been sequenced completely, showing considerable divergence between them. It is therefore proving difficult, by empirical approaches, to identify pan-genus, avipoxvirus-specific oligonucleotide probes for PCR and sequencing to support phylogenetic studies.
View Article and Find Full Text PDF