Publications by authors named "Susan J Gage"

Polycyclic aromatic hydrocarbons (PAHs) have been reported to absorb ultraviolet (UV) light, resulting in enhanced toxicity. Early developmental stages of bivalves may be particularly susceptible to photo-enhanced toxicity during oil spills. In the current study, toxicity tests were conducted with sperm and three larval ages of the eastern oyster (Crassostrea virginica) to evaluate the photo-enhanced toxicity of low-energy water-accommodated fractions (WAFs) of two weathered Macondo crude oils collected from the Deepwater Horizon incident.

View Article and Find Full Text PDF

Acute toxicity tests (48-96-h duration) were conducted with larvae of 2 echinoderm species (Strongylocentrotus purpuratus and Dendraster excentricus) and 4 bivalve mollusk species (Crassostrea virginica, Crassostrea gigas, Mytilus galloprovincialis, and Mercenaria mercenaria). Developing larvae were exposed to water-accommodated fractions (WAFs) and chemically enhanced water-accommodated fractions (CEWAFs) of fresh and weathered oils collected from the Gulf of Mexico during the Deepwater Horizon incident. The WAFs (oils alone), CEWAFs (oils plus Corexit 9500A dispersant), and WAFs of Corexit alone were prepared using low-energy mixing.

View Article and Find Full Text PDF

The present study examined the effects of chronic exposure of eastern oyster (Crassostrea virginica) larvae to the water-accommodated fractions of fresh and weathered oils collected from the Deepwater Horizon incident, with and without additions of the dispersant Corexit 9500A, as well as to solutions of Corexit alone. Both shell growth of larvae exposed to test materials for a period of 10 d and larval settlement after 28 d of exposure were the most sensitive endpoints, with the 10-d growth endpoint being less variable among replicates. Growth and settlement endpoints were more sensitive than larval survival and normal development after 10 d and 28 d.

View Article and Find Full Text PDF