Publications by authors named "Susan J Atkinson"

ADAM (a disintegrin and metalloproteinase) 10 is a key member of the ADAM family of disintegrin and metalloproteinases which process membrane-associated proteins to soluble forms in a process known as 'shedding'. Among the major targets of ADAM10 are Notch, EphrinA2 and CD44. In many cell-based studies of shedding, the activity of ADAM10 appears to overlap with that of ADAM17, which has a similar active-site topology relative to the other proteolytically active ADAMs.

View Article and Find Full Text PDF

Two methods for the assessment of the expression of gelatinases A and B, MMP-2 and MMP-9, in articular cartilage are described. Immunohistochemical analysis of tissue sections provides information about the precise localization of the enzymes within the tissue, pinpointing the cells that synthesize the proteinases, and zymography of cell/ tissue conditioned culture media allows a semi-quantitative assessment of the gelatinases and their activation status.

View Article and Find Full Text PDF

Excessive proteolytic activity is a feature of chronic wounds such as venous ulcers, in which resolution of the inflammatory response fails and restorative matrix accumulation is delayed as a consequence. The inflammatory actions of native androgens during the healing of acute skin wounds have lately been characterized. We have now investigated the hypothesis that such activities may impact upon the balance between anabolic and catabolic processes during wound healing.

View Article and Find Full Text PDF

The hemopexin-like domain of membrane-type matrix metalloproteinase-1 (MT1-MMP) enables MT1-MMP to form oligomers that facilitate the activation of pro-matrix metalloproteinase-2 (pro-MMP-2) at the cell surface. To investigate the role of the MT1-MMP hemopexin domain in the trafficking of MT1-MMP to the cell surface we have examined the activity of two MT1-MT4-MMP chimaeras in which the hemopexin domain of MT1-MMP has been replaced with that of human or mouse MT4-MMP. We show that MT1-MMP bearing the hemopexin domain of MT4-MMP was incapable of activating pro-MMP-2 or degrading gelatin in cell based assays.

View Article and Find Full Text PDF

Membrane-type matrix metalloproteinases (MT-MMPs) have emerged as key enzymes in tumor cell biology. The importance of MT1-MMP, in particular, is highlighted by its ability to activate pro-MMP-2 at the cell surface through the formation of a trimolecular complex comprised of MT1-MMP/tissue inhibitor of metalloproteinase-2 (TIMP-2)/pro-MMP-2. TIMPs 1-4 are physiological MMP inhibitors with distinct roles in the regulation of pro-MMP-2 processing.

View Article and Find Full Text PDF

Starting from the observation that the CbzNH(CH2)2 side chain of the potent MMP-2/MMP-14 inhibitor, benzyl-(3R)-4-(hydroxyamino)-3-[isopropoxy(1,1'-biphenyl-4-yl-sulfonyl)amino]-4-oxobutylcarbamate, (R)-1 lies in a hydrophobic region (S1) exposed to the solvent of the protease active site, we hypothesized that an aminoethylcarboxamido chain structurally related to that of (R)-1 might be an useful tool to bind another linker stretching out from the protein. This would be able to interact either with a enzyme region adjacent to the active site, or with other molecules of matrix metalloproteinases (MMPs), or other proteins of the extracellular matrix (ECM) that may be involved in the enzyme activation. On these basis we describe new dimeric compounds of type 2, twin hydroxamic acids, obtained by the joint of two drug entities of (R)-1 linked in P1 by extendable semirigid linkers.

View Article and Find Full Text PDF

Unstimulated human fibrosarcoma cells (HT1080) constitutively secrete matrix metalloproteinase 2 (MMP 2) as a proenzyme requiring proteolytic cleavage by membrane type-1 MMP (MT1 MMP) for activation. Physiological and pharmacological stimuli induce clustering of MT1 MMP/tissue inhibitor of MMP 2 "receptors", promoting binding and activation of MMP 2. We now report that cholesterol depleted HT1080 cells accumulated MT1 MMP on the cell surface and activated MMP 2.

View Article and Find Full Text PDF