Mass-spectrometry-based metabolomics and molecular phylogeny data were used to identify a metabolically prolific strain of that was obtained from a deep-water Great Lakes sediment sample. An investigation of the isolate's secondary metabolome resulted in the purification of a 22-mer peptaibol, gichigamin A (1). This peptidic natural product exhibited an amino acid sequence including several β-alanines that occurred in a repeating motif, causing the compound to adopt a unique right-handed 3 helical structure.
View Article and Find Full Text PDF7,8-Dihydroxyflavone (DHF), is a recently described TrkB agonist that readily crosses the blood brain barrier. We treated C57Bl/6 mice with MOG--induced EAE daily with DHF starting on the day of disease induction. Clinical severity of impairment was reduced throughout the course of disease.
View Article and Find Full Text PDFTreatment of experimental autoimmune encephalomyelitis (EAE) with resveratrol, an activator of sirtuin 1 (SIRT1), reduces disease severity. This suggested that activators of SIRT1, a highly conserved NAD-dependent protein deacetylase, might have immune-modulating or neuroprotective therapeutic effects in EAE. Previously, we showed that SIRT1 expression increases in EAE, suggesting that it is an adaptive response.
View Article and Find Full Text PDFBrain derived neurotrophic factor (BDNF) has neuroprotective properties but its use has been limited by poor penetration of the blood brain barrier. Treatment using bone marrow stem cells (BMSC) or retroviruses as vectors reduces the clinical and pathological severity of experimental allergic encephalomyelitis (EAE). We have refined the BMSC based delivery system by introducing a tetracycline sensitive response element to control BDNF expression.
View Article and Find Full Text PDFVoltage-gated potassium (K(v)) channels play an important role in the regulation of growth factor-induced cell proliferation. We have previously shown that cell cycle activation is induced in oligodendrocytes (OLGs) by complement C5b-9, but the role of K(v) channels in these cells had not been investigated. Differentiated OLGs were found to express K(v)1.
View Article and Find Full Text PDFBackground: Mechanisms of neuroprotection encompass energy deficits in brain arising from insufficient oxygen and glucose levels following respiratory failure; ischemia or stroke, which produce metabolic stresses that lead to unconsciousness and seizures; and the effects of general anesthetics. Foremost among those K(+) channels viewed as important for neuroprotection are ATP-sensitive (K(ATP)) channels, which belong to the family of inwardly rectifying K(+) channels (K(ir)) and contain a sulfonylurea subunit (SUR1 or SUR2) combined with either K(ir)6.1 (KCNJ8) or K(ir)6.
View Article and Find Full Text PDFMammalian sterile 20-like kinase 1 (MST1) is a serine/threonine protein kinase that is activated in response to a variety of apoptotic stimuli and causes apoptosis when over-expressed in mammalian cells. The physiological regulation and cellular targets of MST1 are not well understood. Using a yeast two-hybrid system, we identified human WW45 (hWW45, also called hSav1) as an MST1-binding protein.
View Article and Find Full Text PDFRecent Pat CNS Drug Discov
November 2007
Potassium (K+) channels are the most heterogeneous and widely distributed class of ion channels. K(+) channels are dynamic pore-forming transmembrane proteins known to play important roles in all cell types underlying both normal and pathophysiological functions. Essential for such diverse physiological processes as nerve impulse propagation, muscle contraction, cellular activation and the secretion of biologically active molecules, various K(+) channels are recognized as potential therapeutic targets in the treatment of multiple sclerosis, Alzheimer's disease, Parkinson's disease, epilepsy, stroke, brain tumors, brain/spinal cord ischemia, pain and schizophrenia, migraine, as well as cardiac arrhythmias, pulmonary hypertension, diabetes, cervical cancer, urological diseases and sepsis.
View Article and Find Full Text PDFWe have analyzed the localization of dendritic cells (DCs) in non-lesional gray matter (NLGM) in comparison to non-lesional white matter (NLWM) and acute or chronic active multiple sclerosis (MS) lesions. Immunohistochemistry was performed on cryostat sections for DCs markers (CD209, CD205, CD83) and other markers for inflammatory cells (CD68, CD8, CD4, CD3, CCR7, CCR5). We found cells expressing CD209 and containing myelin basic protein in both perivascular and parenchymal areas of NLGM.
View Article and Find Full Text PDFApoptosis results in cell death within 10 min after initiation by Bcl-2 family proteins and mitochondria; however, cells enter the apoptotic pathway at different elapsed times after being triggered. Intrinsic factors related to chemical or physical cell damage can initiate apoptosis at a specific cell cycle phase; it is not clear whether cells insulted via an extrinsic pathway also die at a specific cell cycle phase, or how apoptosis is related to cell cycle progression in cells. To illustrate the kinetic changes of apoptosis during cell cycle progression, we examined both intrinsically and extrinsically induced apoptosis in MOLT-4 and Jurkat lymphocytic leukemia cells and in cultured peripheral blood lymphocytes (PBLs) using a recently modified annexin V and propidium iodide method, which detects cell cycle-specific apoptosis.
View Article and Find Full Text PDFTelomerase activation is a critical event in cell immortalization, and an increase in human telomerase reverse transcriptase (hTERT) expression is the key step in activating telomerase. The phosphatase and tensin homolog (PTEN) gene encodes a double-specific phosphatase that induces cell cycle arrest, inhibits cell growth, and causes apoptotic cell death. Here, we evaluated a combined PTEN and antisense hTERT gene therapy for experimental glioma in vitro and in vivo.
View Article and Find Full Text PDFInflammatory tissue damage and the presence of reactive immunocompetent T lymphocytes, macrophages, microglia, and dendritic cells (DCs) are characteristic features in the human chronic inflammatory demyelinating disease, multiple sclerosis (MS). Together, these cells orchestrate the inflammation and immunopathogenesis underlying the MS autoimmune disease processes and all up-regulate the same voltage-gated potassium (K(v)) channel, K(v)1.3, when fully activated.
View Article and Find Full Text PDFObjective: Potassium (K(+)) channels on immune cells have gained attention recently as promising targets of therapy for immune-mediated neurological diseases such as multiple sclerosis (MS). We examined K(+) channels on dendritic cells (DCs), which infiltrate the brain in MS and may impact disease course.
Methods: We identified K(+) channels on blood-derived DCs by whole-cell patch-clamp analysis, confirmed by immunofluorescent staining.
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by demyelination, with a relative sparing of axons. In MS patients, many neurologic signs and symptoms have been attributed to the underlying conduction deficits. The idea that neurologic function might be improved if conduction could be restored in CNS demyelinated axons led to the testing of potassium (K(+)) channel blockers as a symptomatic treatment.
View Article and Find Full Text PDFMultiple Sclerosis (MS) is characterized by central nervous system perivenular and parenchymal mononuclear cell infiltrates consisting of activated T cells and macrophages. We recently demonstrated that elevated expression of the voltage-gated potassium channel, Kv1.3, is a functional marker of activated effector memory T (T(EM)) cells in experimental allergic encephalomyelitis and in myelin-specific T cells derived from the peripheral blood of patients with MS.
View Article and Find Full Text PDFThe biophysical and pharmacological effects of individual phenylalanine-for-leucine (Phe-for-Leu) substitutions in the leucine heptad repeat region located at the cytosolic surface of the channel pore, on whole-cell K(+) currents, were studied in cloned and mutated human brain Kvl.4 K(+) channels (hKvl.4) transiently transfected into HeLa cells.
View Article and Find Full Text PDF