Recognition of pathogen-derived foreign nucleic acids is central to innate immune defense. This requires discrimination between structurally highly similar self and nonself nucleic acids to avoid aberrant inflammatory responses as in the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). How vast amounts of self RNA are shielded from immune recognition to prevent autoinflammation is not fully understood.
View Article and Find Full Text PDFObjective: Aicardi-Goutières syndrome (AGS) is an early-onset encephalopathy resembling congenital viral infection that is characterized by basal ganglia calcifications, loss of white matter, cerebrospinal fluid (CSF) lymphocytosis, and elevated interferon-alpha levels in the CSF. Studies have shown that AGS is an autosomal-recessive disease linked to mutations in 5 genes, encoding the 3'-repair DNA exonuclease 1 (TREX1), the 3 subunits of ribonuclease H2 (RNASEH2A-C), and sterile alpha motif domain and HD domain-containing protein 1 (SAMHD1). In this study we further characterized the phenotypic spectrum of this disease.
View Article and Find Full Text PDF