Publications by authors named "Susan Hubchak"

Background: Increased intrahepatic bile acids cause endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) is activated to maintain homeostasis. UPR dysregulation, including the inositol-requiring enzyme 1α/X-box protein 1 (IRE1α/XBP1) pathway, is associated with adult liver diseases but has not been characterized in pediatric liver diseases. We evaluated hepatic UPR expression in pediatric cholestatic liver disease (CLD) explants and hypothesize that an inability to appropriately activate the hepatic IRE1α/XBP1 pathway is associated with the pathogenesis of CLD.

View Article and Find Full Text PDF

FXR regulates bile acid metabolism, and FXR null (Fxr) mice have elevated bile acid levels and progressive liver injury. The inositol-requiring enzyme 1α/X-box binding protein 1 (XBP1) pathway is a protective unfolded protein response pathway activated in response to endoplasmic reticulum stress. Here, we sought to determine the role of the inositol-requiring enzyme 1α/XBP1 pathway in hepatic bile acid toxicity using the Fxr mouse model.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of liver diseases in the United States and can progress to cirrhosis, end-stage liver disease and need for liver transplantation. There are limited therapies for NAFLD, in part, due to incomplete understanding of the disease pathogenesis, which involves different cell populations in the liver. Endoplasmic reticulum stress and its adaptative unfolded protein response (UPR) signaling pathway have been implicated in the progression from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH).

View Article and Find Full Text PDF

Background And Aims: The unfolded protein response (UPR) is a coordinated cellular response to endoplasmic reticulum (ER) stress that functions to maintain cellular homeostasis. When ER stress is unresolved, the UPR can trigger apoptosis. Pathways within the UPR influence bile acid metabolism in adult animal models and adult human liver diseases, however, the UPR has not been studied in young animal models or pediatric liver diseases.

View Article and Find Full Text PDF

Unlabelled: Bile acids are endogenous ligands of the nuclear receptor, farnesoid X receptor (FXR), and pharmacological FXR modulators are under development for the treatment of several liver disorders. The inositol-requiring enzyme 1α/X-box binding protein 1 (IRE1α/XBP1) pathway of the unfolded protein response (UPR) is a protective cellular signaling pathway activated in response to endoplasmic reticulum (ER) stress. We investigated the role of FXR signaling in activation of the hepatic XBP1 pathway.

View Article and Find Full Text PDF

The unfolded protein response (UPR) is an adaptive response to endoplasmic reticulum stress and the inositol-requiring enzyme 1α/X-box binding protein 1 (IRE1α/XBP1) pathway of the UPR is important in lipid metabolism. However, its role in bile acid metabolism remains unknown. We demonstrate that liver-specific knockout (LS-) mice had a 45% reduction in total bile acid pool.

View Article and Find Full Text PDF

Transforming growth factor-β (TGF-β) signaling plays an important and complex role in renal fibrogenesis. The seemingly simple TGF-β/Smad cascade is intensively regulated at several levels, including crosstalk with other signaling pathways. Epidermal growth factor (EGF) is a potent mitogen for epithelial cells and is elevated in diseased kidneys.

View Article and Find Full Text PDF

Hypoxia-inducible factors (HIFs) are transcription factors consisting of an oxygen-sensitive α-subunit binding to a stable β-subunit. HIFs regulate multiple signaling pathways that could contribute to fibrogenesis, supporting their potential role in hypoxia-mediated renal fibrosis. We previously reported that HIF-1 is upregulated and required for transforming growth factor (TGF)-β induction of collagen in renal tubular cells.

View Article and Find Full Text PDF

Transforming growth factor (TGF)-β is a major mediator of kidney fibrosis. In the past decade it was recognized that, besides canonical Smad signaling, many other signaling pathways participate in the process of TGF-β-induced fibrogenesis. One such pathway involves mammalian target of rapamycin complex (mTORC)1.

View Article and Find Full Text PDF

Increasing evidence suggests that chronic kidney disease may develop following acute kidney injury and that this may be due, in part, to hypoxia-related phenomena. Hypoxia-inducible factor (HIF) is stabilized in hypoxic conditions and regulates multiple signaling pathways that could contribute to renal fibrosis. As transforming growth factor (TGF)-β is known to mediate renal fibrosis, we proposed a profibrotic role for cross talk between the TGF-β1 and HIF-1α signaling pathways in kidney cells.

View Article and Find Full Text PDF

The data regarding the pathogenesis of progressive kidney disease implicate cytokine effects, physiological factors, and myriad examples of relatively nonspecific cellular dysfunction. The sheer volume of information being generated on this topic threatens to overwhelm our efforts to understand progression in chronic kidney disease or to derive rational strategies to treat it. Here, a conceptual framework is offered for organizing and considering these data.

View Article and Find Full Text PDF

Transforming growth factor (TGF)-beta is a central mediator in the progression of glomerulosclerosis, leading to accumulation of aberrant extracellular matrix proteins and inappropriate expression of smooth muscle alpha-actin in the kidney. Previously, we reported that disrupting the cytoskeleton diminished TGF-beta-stimulated type I collagen accumulation in human mesangial cells. As cytoskeletal signaling molecules, including the Rho-family GTPases, have been implicated in fibrogenesis, we sought to determine the respective roles of RhoA and Rac1 in HMC collagen I expression.

View Article and Find Full Text PDF

By inducing epithelial-to-mesenchymal transition (EMT), transforming growth factor-beta (TGF-beta) promotes cancer progression and fibrosis. Here we show that expression of the TGF-beta receptor-associated protein, SARA (Smad anchor for receptor activation), decreases within 72 h of exposure to TGF-beta and that this decline is both required and sufficient for the induction of several markers of EMT. It has been suggested recently that expression of the TGF-beta signaling mediators, Smad2 and Smad3, may have different functional effects, with Smad2 loss being more permissive for EMT progression.

View Article and Find Full Text PDF

Transforming growth factor (TGF)-beta is a central stimulus of the events leading to chronic progressive kidney disease, having been implicated in the regulation of cell proliferation, hypertrophy, apoptosis and fibrogenesis. The fact that it mediates these varied events suggests that multiple mechanisms play a role in determining the outcome of TGF-beta signaling. Regulation begins with the availability and activation of TGF-beta and continues through receptor expression and localization, control of the TGF-beta family-specific Smad signaling proteins, and interaction of the Smads with multiple signaling pathways extending into the nucleus.

View Article and Find Full Text PDF

Background: Platelet-derived growth factor (PDGF)-B regulates mesangial cell and vessel development during embryogenesis, and contributes to the pathogenesis of adult renal and vascular diseases. Endothelial cell PDGF-B exerts paracrine effects on mesangial cells, but its regulation is not well defined. We examined the impact of hypoxia on PDGF-B-mediated interactions between glomerular endothelial and mesangial cells, a condition of potential relevance in developing, and diseased adult, kidneys.

View Article and Find Full Text PDF

TGF-beta1 has been implicated in glomerular extracellular matrix accumulation, although the precise cellular mechanism(s) by which this occurs is not fully understood. The authors have previously shown that the Smad signaling pathway is present and functional in human glomerular mesangial cells and plays a role in activating type I collagen gene expression. It also was determined that TGF-beta1 activates ERK mitogen-activated protein kinase in mesangial cells to enhance Smad activation and collagen expression.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGF-beta) is closely associated with progressive renal fibrosis. Significant progress has been accomplished in determining the cellular signaling pathways that are activated by TGF-beta. This knowledge is being applied to glomerular mesangial cell models of extracellular matrix (ECM) accumulation.

View Article and Find Full Text PDF