Publications by authors named "Susan Grill"

Tylophorine analogs have been shown to exhibit diverse activities against cancer, inflammation, arthritis, and lupus in vivo. In this study, we demonstrated that two tylophorine analogs, DCB-3503 and rac-cryptopleurine, exhibit potent inhibitory activity against hepatitis C virus (HCV) replication in genotype 1b Con 1 isolate. The inhibition of HCV replication is at least partially mediated through cellular heat shock cognate protein 70 (Hsc70).

View Article and Find Full Text PDF

Individual variation in response to antiretroviral therapy is well-known, but it is not clear if demographic characteristics such as gender, age, and ethnicity are responsible for the variation. To optimize anti-HIV therapy and guide antiretroviral drug discovery, determinants that cause variable responses to therapy need to be evaluated. We investigated the determinants of intracellular concentrations of nucleoside analogs using peripheral blood mononuclear cells from 40 healthy donors.

View Article and Find Full Text PDF

Recent years have seen the rapid advancement of new therapeutic agents against hepatitis C virus (HCV) in response to the need for treatment that is unmet by interferon (IFN)-based therapies. Most antiviral drugs discovered to date are small molecules that modulate viral enzyme activities. In the search for highly selective protein-binding molecules capable of disrupting the viral life cycle, we have identified a class of anionic tetraphenylporphyrins as potent and specific inhibitors of the HCV replicons.

View Article and Find Full Text PDF

2',3'-Didehydro-3'-deoxy-4'-ethynylthymidine (4'-Ed4T), a derivative of stavudine (d4T), has potent activity against human immunodeficiency virus and is much less inhibitory to mitochondrial DNA synthesis and cell growth than its progenitor, d4T. 4'-Ed4T triphosphate was a better reverse transcriptase (RT) inhibitor than d4T triphosphate, due to the additional binding of the 4'-ethynyl group at a presumed hydrophobic pocket in the RT active site. Previous in vitro selection for 4'-Ed4T-resistant viral strains revealed M184V and P119S/T165A/M184V mutations on days 26 and 81, respectively; M184V and P119S/T165A/M184V conferred 3- and 130-fold resistance to 4'-Ed4T, respectively.

View Article and Find Full Text PDF

Background: Most in vitro assays of drug potency may not adequately predict the performance in vivo. Methods to assess the persistence of antiviral activity of deoxynucleoside analogs, which require intracellular activation to the active metabolites that can persist in cells, will be important for designing dosages, combination regimens, and assessing treatment compliance. Using an HIV-IIIB/TZM-bl indicator cell culture system, we assessed the ability of an inhibitor to protect cells from infection and to delay viral rebound after removal of inhibitor from culture.

View Article and Find Full Text PDF

The therapeutic benefits of current antiretroviral therapy are limited by the evolution of drug-resistant virus and long-term toxicity. Novel antiretroviral compounds with activity against drug-resistant viruses are needed. 2',3'-didehydro-3'-deoxy-4'-ethynylthymidine (4'-Ed4T), a novel thymidine analog, has potent anti-human immunodeficiency virus (HIV) activity, maintains considerable activity against multidrug-resistant HIV strains, and is less inhibitory to mitochondrial DNA synthesis in cell culture than its progenitor stavudine (D4T).

View Article and Find Full Text PDF

Five phenanthroindolizidine alkaloids (PA) were chemically synthesized and seven were isolated from Tylophora atrofolliculata. To facilitate future drug design of phenanthroindolizidine alkaloids as potential antitumor agents, we have explored the structure-activity relationships (SAR) of this class of compounds. We demonstrated that DCB-3503 and tylophorinidine (PA-7) were among the most active compounds against tumor growth both in vitro and in vivo.

View Article and Find Full Text PDF

Nuclear factor-kappaB (NF-kappaB) has been recognized to play a critical role in cell survival and inflammatory processes. It has become a target for intense drug development for the treatment of cancer, inflammatory, and autoimmune diseases. Here, we describe a potent NF-kappaB inhibitor, eriocalyxin B (Eri-B), an ent-kauranoid isolated from Isodon eriocalyx, an anti-inflammatory remedy.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) is causally linked to Epstein-Barr virus (EBV), and the EBV oncoprotein, latent membrane protein 1 (LMP-1), is expressed in the majority of NPCs. LMP-1 upregulates antiapoptotic genes, including bcl-2, and Bcl-2 protein is overexpressed in NPC. Given the antiapoptotic and chemoprotective effects of Bcl-2, it represents a rational therapeutic target in NPC.

View Article and Find Full Text PDF

The development of specific inhibitors that can block nuclear factor-kappaB (NF-kappaB) activation is an approach for the treatment of cancer, autoimmune, and inflammatory diseases. Several diterpenoids, oridonin, ponicidin, xindongnin A, and xindongnin B were isolated from the herb Isodon rubescens. These compounds were found to be potent inhibitors of NF-kappaB transcription activity and the expression of its downstream targets, cyclooxygenase-2 and inducible nitric-oxide synthase.

View Article and Find Full Text PDF

The antiviral drug 2',3'-didehydro-3'-deoxythymidine (D4T; also know as stavudine and Zerit), which is used against human immunodeficiency virus (HIV), causes delayed toxicity (peripheral neuropathy) in long-term use. After examining a series of 2',3'-didehydro-3'-deoxy-4'-substituted thymidine (4'-substituted D4T) analogs, 4'-ethynyl D4T was found to have a fivefold-better antiviral effect and to cause less cellular and mitochondrial toxicity than D4T. The antiviral activity of this compound can be reversed by dThd but not by dCyd.

View Article and Find Full Text PDF

l-Nucleoside analogs are a new class of clinically active antiviral and anticancer agents. The phosphorylation of these analogs from diphosphate to triphosphate metabolites is crucial for their biological action. We studied the role of 3-phosphoglycerate kinase, a glycolytic enzyme, in the metabolism of l-nucleoside analogs, using small interfering RNAs to down-regulate the amount of this enzyme in HelaS3 and 2.

View Article and Find Full Text PDF