Publications by authors named "Susan Goderie"

Tau protein aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP), spurring development of tau-lowering therapeutic strategies. Here, we report fully human bifunctional anti-tau-PEST intrabodies that bind the mid-domain of tau to block aggregation and degrade tau via the proteasome using the ornithine decarboxylase (ODC) PEST degron. They effectively reduced tau protein in human iPSC-derived cortical neurons in 2D cultures and 3D organoids, including those with the disease-associated tau mutations R5L, N279K, R406W, and V337M.

View Article and Find Full Text PDF

The leptomeninges envelop the central nervous system (CNS) and contribute to cerebrospinal fluid (CSF) production and homeostasis. We analyzed the meninges overlying the anterior or posterior forebrain in the adult mouse by single nuclear RNA-sequencing (snucRNA-seq). This revealed regional differences in fibroblast and endothelial cell composition and gene expression.

View Article and Find Full Text PDF

Cerebral cortical-enriched organoids derived from human pluripotent stem cells (hPSCs) are valuable models for studying neurodevelopment, disease mechanisms, and therapeutic development. However, recognized limitations include the high variability of organoids across hPSC donor lines and experimental replicates. We report a 96-slitwell method for efficient, scalable, reproducible cortical organoid production.

View Article and Find Full Text PDF

Mutations in the MAPT gene that encodes tau lead to frontotemporal dementia (FTD) with pathology evident in both cerebral neurons and glia. Human cerebral organoids (hCOs) from individuals harboring pathogenic tau mutations can reveal the earliest downstream effects on molecular pathways within a developmental context, generating interacting neurons and glia. We found that in hCOs carrying the V337M and R406W tau mutations, the cholesterol biosynthesis pathway in astrocytes was the top upregulated gene set compared with isogenic controls by single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

STAU2 is a double-stranded RNA-binding protein enriched in the nervous system. During asymmetric divisions in the developing mouse cortex, STAU2 preferentially distributes into the intermediate progenitor cell (IPC), delivering RNA molecules that can impact IPC behavior. Corticogenesis occurs on a precise time schedule, raising the hypothesis that the cargo STAU2 delivers into IPCs changes over time.

View Article and Find Full Text PDF

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules.

View Article and Find Full Text PDF

Genetic and genomic studies of brain disease increasingly demonstrate disease-associated interactions between the cell types of the brain. Increasingly complex and more physiologically relevant human-induced pluripotent stem cell (hiPSC)-based models better explore the molecular mechanisms underlying disease but also challenge our ability to resolve cell type-specific perturbations. Here, we report an extension of the RiboTag system, first developed to achieve cell type-restricted expression of epitope-tagged ribosomal protein (RPL22) in mouse tissue, to a variety of in vitro applications, including immortalized cell lines, primary mouse astrocytes, and hiPSC-derived neurons.

View Article and Find Full Text PDF

Neural stem cell activity in the ventricular-subventricular zone (V-SVZ) decreases with aging, thought to occur by a unidirectional decline. However, by analyzing the V-SVZ transcriptome of male mice at 2, 6, 18, and 22 months, we found that most of the genes that change significantly over time show a reversal of trend, with a maximum or minimum expression at 18 months. In vivo, MASH1 progenitor cells decreased in number and proliferation between 2 and 18 months but increased between 18 and 22 months.

View Article and Find Full Text PDF

Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance.

View Article and Find Full Text PDF

Biological imaging of live cell and tissue using 3D microscopy is able to capture time-lapse image sequences showing multiple molecular markers labeling different biological structures simultaneously. In order to analyze this complex multi-dimensional image sequence data, there is a need for automated quantitative algorithms, and for methods to visualize and interact with both the data and the analytical results. Traditional computational human input devices such as the keyboard and mouse are no longer adequate for complex tasks such as manipulating and navigating 3+ dimensional volumes.

View Article and Find Full Text PDF

Background: Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established.

View Article and Find Full Text PDF

An essential aspect of stem cell culture is the successful maintenance of the undifferentiated state. Many types of stem cells are FGF2 dependent, and pluripotent stem cells are maintained by replacing FGF2-containing media daily, while tissue-specific stem cells are typically fed every 3rd day. Frequent feeding, however, results in significant variation in growth factor levels due to FGF2 instability, which limits effective maintenance due to spontaneous differentiation.

View Article and Find Full Text PDF

After spinal cord injury (SCI), loss of cells and damage to ascending and descending tracts can result in paralysis. Current treatments for SCI are based on patient stabilization, and much-needed regenerative therapies are still under development. To activate and instruct stem and progenitor cells or injured tissue to aid SCI repair, it is important to modify the injury environment for a protracted period, to allow time for cell activation, proliferation and appropriate fate differentiation.

View Article and Find Full Text PDF

This protocol and the accompanying software program called LEVER (lineage editing and validation) enable quantitative automated analysis of phase-contrast time-lapse images of cultured neural stem cells. Images are captured at 5-min intervals over a period of 5-15 d as the cells proliferate and differentiate. LEVER automatically segments, tracks and generates lineage trees of the stem cells from the image sequence.

View Article and Find Full Text PDF

Neural progenitor cells (NPCs) in the adult subventricular zone (SVZ) are associated with ependymal and vasculature niches, which regulate stem cell self-renewal and differentiation. Activated Type B stem cells and their progeny, the transit-amplifying type C cells, which express EGFR, are most highly associated with vascular cells, indicating that this niche supports lineage progression. Here, we show that proliferative SVZ progenitor cells home to endothelial cells in a stromal-derived factor 1 (SDF1)- and CXC chemokine receptor 4 (CXCR4)-dependent manner.

View Article and Find Full Text PDF

There is an emerging understanding of the importance of the vascular system within stem cell niches. Here, we examine whether neural stem cells (NSCs) in the adult subventricular zone (SVZ) lie close to blood vessels, using three-dimensional whole mounts, confocal microscopy, and automated computer-based image quantification. We found that the SVZ contains a rich plexus of blood vessels that snake along and within neuroblast chains.

View Article and Find Full Text PDF

Cell transplantation is a promising way to treat spinal cord injury and neurodegenerative disorders. Neural stem cells taken from the embryonic spinal cord are an appealing source of cells for transplantation because these cells are committed to making spinal cord progeny. However these stem cells are rare and require expansion in tissue culture to generate sufficient cells for transplantation.

View Article and Find Full Text PDF

Understanding cell lineage relationships is fundamental to understanding development, and can shed light on disease etiology and progression. We present a method for automated tracking of lineages of proliferative, migrating cells from a sequence of images. The method is applicable to image sequences gathered either in vitro or in vivo.

View Article and Find Full Text PDF

Neural progenitor cells can be derived from a variety of developmental stages when they are preferentially proliferating, undergoing neurogenesis or undergoing gliogenesis. We used FACS sorting and the LeX surface marker to enrich neural progenitor cells from different embryonic stages and adult and compared their gene expression profiles using Affymetrix Microarrays. Our results show that, while there are common genes expressed in the progenitor cell population from all stages, there are also significant differences in gene expression patterns that correlate with stage-related behaviors.

View Article and Find Full Text PDF

It has been debated whether asymmetric distribution of cell surface receptors during mitosis could generate asymmetric cell divisions by yielding daughters with different environmental responsiveness and, thus, different fates. We have found that in mouse embryonic forebrain ventricular and subventricular zones, the EGFR can distribute asymmetrically during mitosis in vivo and in vitro. This occurs during divisions yielding two Nestin+ progenitor cells, via an actin-dependent mechanism.

View Article and Find Full Text PDF

Neural stem cells are reported to lie in a vascular niche, but there is no direct evidence for a functional relationship between the stem cells and blood vessel component cells. We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production. Both embryonic and adult neural stem cells respond, allowing extensive production of both projection neuron and interneuron types in vitro.

View Article and Find Full Text PDF