Publications by authors named "Susan Gock"

Pharmacogenomics, the study on genetic contributions to drug action may help in certifying fentanyl toxicity. Fentanyl is used clinically as an adjunct to surgical anesthesia and for chronic pain management. Its toxicity may be partially due to cytochrome P450 (CYP) 3A4*1B and 3A5*3 variant alleles, resulting in variable fentanyl metabolism.

View Article and Find Full Text PDF

The phenylalkylamine derivatives, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy, XTC, Adam), 3,4-methylenedioxyethamphetamine (MDEA, MDE, Eve), and 3,4-methylenedioxyamphetamine (MDA), are psychostimulants with hallucinogenic properties. MDA is also a metabolite of both MDMA and MDEA. These drugs are ring-substituted amphetamine derivatives that produce hallucinogenic, entactogenic ('love drug'), and stimulating effects.

View Article and Find Full Text PDF

Pharmacogenomics, applied as an aspect of molecular autopsy, may be used as an adjunct for certifying methadone fatalities. Methadone is metabolized by cytochrome P-450 (CYP) 1A2, 3A4, and 2D6. We hypothesized that methadone toxicity may be partially due to CYP 2D6 *3, *4, and *5 variant alleles, resulting in poor drug metabolism.

View Article and Find Full Text PDF

Pharmacogenomics, the study of the impact of heritable traits on pharmacology and toxicology, may serve as an adjunct for certifying opioid fatalities. Oxycodone, frequently prescribed for the relief of moderate to severe pain, is metabolized by cytochrome P450 (CYP) 2D6, encoded by a polymorphic gene with three mutations (*3, *4, and *5) with a combined 95% allelic frequency and about 10% prevalence. Individuals with variant alleles are more susceptible to oxycodone toxicity.

View Article and Find Full Text PDF