Publications by authors named "Susan E Wilkie"

Mutations in KCNV2 have been proposed as the molecular basis for cone dystrophy with supernormal rod electroretinogram. KCNV2 codes for the modulatory voltage-gated potassium channel α-subunit, Kv8.2, which is incapable of forming functional channels on its own.

View Article and Find Full Text PDF

The long-wavelength-sensitive (LWS) opsins form one of four classes of vertebrate cone visual pigment and exhibit peak spectral sensitivities (λ(max)) that generally range from 525 to 560 nm for rhodopsin/vitamin-A(1) photopigments. Unique amongst the opsin classes, many LWS pigments show anion sensitivity through the interaction of chloride ions with a histidine residue at site 197 (H197) to give a long-wavelength spectral shift in peak sensitivity. Although it has been shown that amino acid substitutions at five sites (180, 197, 277, 285 and 308) are useful in predicting the λ(max) values of the LWS pigment class, some species, such as the elephant shark and most marine mammals, express LWS opsins that possess λ(max) values that are not consistent with this 'five-site' rule, indicating that other interactions may be involved.

View Article and Find Full Text PDF

Cone dystrophy 3 (COD3) is a severe dominantly inherited retinal degeneration caused by missense mutations in GUCA1A, the gene encoding Guanylate Cyclase Activating Protein 1 (GCAP1). The role of GCAP1 in controlling cyclic nucleotide levels in photoreceptors has largely been elucidated using knock-out mice, but the disease pathology in these mice cannot be extrapolated directly to COD3 as this involves altered, rather than loss of, GCAP1 function. Therefore, in order to evaluate the pathology of this dominant disorder, we have introduced a point mutation into the murine Guca1a gene that causes an E155G amino acid substitution; this is one of the disease-causing mutations found in COD3 patients.

View Article and Find Full Text PDF

Purpose: Missense mutations in the splicing factor gene PRPF31 cause a dominant form of retinitis pigmentosa (RP11) with reduced penetrance. Missense mutations in PRPF31 have previously been shown to cause reduced protein solubility, suggesting insufficiency of functional protein as the disease mechanism. Here we examine in further detail the effect of the A216P mutation on splicing function.

View Article and Find Full Text PDF

Of the four classes of vertebrate cone visual pigments, the shortwave-sensitive SWS1 class shows some of the largest shifts in lambda(max), with values ranging in different species from 390-435 nm in the violet region of the spectrum to < 360 nm in the ultraviolet. Phylogenetic evidence indicates that the ancestral pigment most probably had a lambda(max) in the UV and that shifts between violet and UV have occurred many times during evolution. In violet-sensitive (VS) pigments, the Schiff base is protonated whereas in UV-sensitive (UVS) pigments, it is almost certainly unprotonated.

View Article and Find Full Text PDF

The shortwave-sensitive SWS1 class of vertebrate visual pigments range in lambda(max) from the violet (385-445 nm) to the ultraviolet (UV) (365-355 nm), with UV-sensitivity almost certainly ancestral. In birds, however, the UV-sensitive pigments present in a number of species have evolved secondarily from an avian violet-sensitive (VS) pigment. All avian VS pigments expressed in vitro to date encode Ser86 whereas Phe86 is present in all non-avian ultraviolet sensitive (UVS) pigments.

View Article and Find Full Text PDF

Background: The genetic basis of variation in human cognitive abilities is poorly understood. RIMS1 encodes a synapse active-zone protein with important roles in the maintenance of normal synaptic function: mice lacking this protein have greatly reduced learning ability and memory function.

Objective: An established paradigm examining the structural and functional effects of mutations in genes expressed in the eye and the brain was used to study a kindred with an inherited retinal dystrophy due to RIMS1 mutation.

View Article and Find Full Text PDF

"Cone dystrophy with supernormal rod electroretinogram (ERG)" is an autosomal recessive disorder that causes lifelong visual loss combined with a supernormal ERG response to a bright flash of light. We have linked the disorder to a 0.98-cM (1.

View Article and Find Full Text PDF

Vertebrate opsins are classified into one of five classes on the basis of amino acid similarity. These classes are short wavelength sensitive 1 and 2 (SWS1, SWS2), medium/long wavelength sensitive (M/LWS), and rod opsin like 1 and 2 (RH1, RH2). In bovine rod opsin (RH1), two critical amino acids form a salt bridge in the apoprotein that maintains the opsin in an inactive state.

View Article and Find Full Text PDF

In this study the mechanism of nuclear importation of the splicing factor PRPF31 is examined and the impact of two disease-linked mutations, A194E and A216P, assessed. Using pull-down assays with GST-tagged importin proteins, we demonstrate that His-tagged PRPF31 interacts with importin beta1 for translocation to the nucleus, with no requirement for importin alpha1. The A194E and A216P mutations have no affect on this interaction.

View Article and Find Full Text PDF

Purpose: To determine the underlying molecular genetic basis of a retinal dystrophy identified in a 4-generation family and to examine the phenotype and the degree of intrafamilial variability.

Design: Prospective case series.

Participants: Six affected individuals from a nonconsanguineous British family.

View Article and Find Full Text PDF

Mutations in AIPL1 are associated with Leber Congenital Amaurosis (LCA), a major cause of childhood blindness, yet the cellular function of the encoded protein has yet to be fully elucidated. In order to investigate the biochemistry of AIPL1, we have developed a system for the expression of the recombinant protein in bacteria and its subsequent purification. The secondary structure and thermostability of wild-type and mutant proteins have been examined by circular dichroism (CD) spectroscopy.

View Article and Find Full Text PDF

Of the four classes of vertebrate cone visual pigments, the shortwave-sensitive SWS1 class shows the shortest lambda(max) values with peaks in different species in either the violet (390-435 nm) or ultraviolet (around 365 nm) regions of the spectrum. Phylogenetic evidence indicates that the ancestral pigment was probably UV-sensitive (UVS) and that the shifts between violet and UV have occurred many times during evolution. This is supported by the different mechanisms for these shifts in different species.

View Article and Find Full Text PDF

The regulation of cGMP levels is central to the normal process of phototransduction in both cone and rod photoreceptor cells. Two of the proteins involved in this process are the enzyme, retinal guanylate cyclase (retGC), and its activating protein (GCAP) through which activity is regulated via changes in cellular Ca2+ levels. Dominant cone-rod dystrophies arising from changes in retGC1 are essentially restricted to mutations in codon 838 and result in the replacement of a conserved arginine residue with either cysteine, histidine or serine.

View Article and Find Full Text PDF

A mutation has been identified in the Rab3A-interacting molecule (RIM1) gene in CORD7, an autosomal dominant cone-rod dystrophy that localises to chromosome 6q14. The G to A point mutation results in an Arg844His substitution in the C(2)A domain of the protein that segregates with disease. This mutation is absent in over 200 control chromosomes, indicating that it is not a common polymorphism, and the almost complete sequence conservation of the C(2)A domain between human and rat RIM1 is consistent with a disease role for the change.

View Article and Find Full Text PDF

A range of cone and cone-rod dystrophies (CORD) have been observed in man, caused by mutations in retinal guanylate cyclase 1 (RetGC1) and guanylate cyclase activating protein 1 (GCAP 1). The CORD causing mutations in RetGC1 are located at a mutation "hot spot" within the dimerisation domain, where R838 is the key residue. Three disease causing mutations have been found in human GCAP1, resulting in cone or cone-rod degeneration.

View Article and Find Full Text PDF

This study investigates the functional consequences of two mutations, A194E and A216P, in the splicing factor gene PRPF31 linked to autosomal dominant retinitis pigmentosa (RP11). Using a yeast complementation assay, we demonstrate that introduction of the human A216P mutation into the yeast orthologue PRP31p results in only partial rescue of growth at the restrictive temperature, indicating that splicing function is not fully restored. An in vivo assay of splicing function in human cells using a bovine rod opsin splicing template did not detect any defect in splicing efficiency or accuracy attributable to either mutation, suggesting that neither has a dominant negative effect on splicing.

View Article and Find Full Text PDF

cDNA and genomic clones encoding guanylate cyclase activating proteins (GCAP1 and GCAP2) in the Japanese puffer fish (Fugu rubripes) were identified by probing, respectively, a retinal cDNA library and a whole genomic cosmid library with human GCAP1 and GCAP2 cDNA probes. Clones were identified as GCAP1 and GCAP2 on the basis of amino acid identity with the equivalent frog sequences and their placement into GCAP1 and GCAP2 clades within a GCAP phylogenetic tree. The Fugu genes have an identical four exon/three intron structure to GCAP1 and GCAP2 genes from other vertebrates but the introns are smaller, with the result that the four exons spread over approximately 1 kb of DNA in each case.

View Article and Find Full Text PDF

The short-wave-sensitive (SWS) visual pigments of vertebrate cone photoreceptors are divided into two classes on the basis of molecular identity, SWS1 and SWS2. Only the SWS1 class are present in mammals. The SWS1 pigments can be further subdivided into violet-sensitive (VS), with lambda(max) (the peak of maximal absorbance) values generally between 400 and 430 nm, and ultraviolet-sensitive (UVS), with a lambda(max)<380 nm.

View Article and Find Full Text PDF
Article Synopsis
  • The cottoid fishes in Lake Baikal are adapted to various depths, leading to changes in their visual pigments, which can be studied to understand evolutionary adaptations to different light environments.
  • The blue-sensitive cone pigments from these fish cluster into two groups based on their max absorption wavelengths, with the British cottoid fish Cottus gobio forming a distinct third group.
  • Genetic analysis reveals that specific amino acid changes in the SWS2 opsin gene are linked to the shifts in light absorption, highlighting their role in improving visual performance in different underwater light conditions.
View Article and Find Full Text PDF

Purpose: Macular corneal dystrophy (MCD) is a rare corneal dystrophy that is characterized by abnormal deposits in the corneal stroma, keratocytes, Descemet's membrane, and endothelium, accompanied by progressive clouding. It has been classified into three immunophenotypes--MCD types I, IA, and II--according to the serum level of sulfated keratan sulfate (KS) and immunoreactivity of the corneal tissue. Recently, mutations in a new carbohydrate sulfotransferase gene (CHST6) encoding corneal glucosamine N-acetyl-6-sulfotransferase (C-GlcNac-6-ST) have been identified as the cause of MCD.

View Article and Find Full Text PDF