Publications by authors named "Susan E Strahan"

Article Synopsis
  • Large wildfires can release smoke high into the atmosphere, which may impact the stratospheric ozone layer that protects us from harmful UV radiation.
  • Data from multiple satellites showed that the 2019-2020 Australian wildfires led to decreases in nitrogen monoxide (NO) levels in the stratosphere, indicating significant chemical reactions on the smoke particles.
  • This research suggests that increasing wildfire occurrences due to climate change could hinder the recovery of the ozone layer, posing further risks to life on Earth.
View Article and Find Full Text PDF

We use satellite ozone records and Global Modeling Initiative chemistry transport model simulations integrated with Modern Era Retrospective for Research and Analysis 2 meteorology to identify a metric that accurately captures the trend in Antarctic ozone attributable to the decline in ozone depleting substances (ODSs). The GMI CTM Baseline simulation with realistically varying ODS levels closely matches observed interannual to decadal scale variations in Antarctic September ozone over the past four decades. The expected increase or recovery trend is obtained from the differences between the Baseline simulation and one with identical meteorology and fixed 1995 ODS levels.

View Article and Find Full Text PDF

NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes.

View Article and Find Full Text PDF

Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low troposphere/boundary layer ozone and ozone precursors upward into the clouds.

View Article and Find Full Text PDF

We examine the capability of the Global Modeling Initiative (GMI) chemistry and transport model to reproduce global mid-tropospheric (618hPa) O-CO correlations determined by the measurements from Tropospheric Emission Spectrometer (TES) aboard NASA's Aura satellite during boreal summer (July-August). The model is driven by three meteorological data sets (fvGCM with sea surface temperature for 1995, GEOS4-DAS for 2005, and MERRA for 2005), allowing us to examine the sensitivity of model O-CO correlations to input meteorological data. Model simulations of radionuclide tracers (Rn, Pb, and Be) are used to illustrate the differences in transport-related processes among the meteorological data sets.

View Article and Find Full Text PDF

Nitrous oxide lifetime is computed empirically from MLS satellite dataEmpirical NO lifetimes compared with models including interannual variabilityResults improve values for present anthropogenic and preindustrial emissions.

View Article and Find Full Text PDF

One expectation when computationally solving an Earth system model is that a correct answer exists, that with adequate physical approximations and numerical methods our solutions will converge to that single answer. With such hubris, we performed a controlled numerical test of the atmospheric transport of CO(2) using 2 models known for accurate transport of trace species. Resulting differences were unexpectedly large, indicating that in some cases, scientific conclusions may err because of lack of knowledge of the numerical errors in tracer transport models.

View Article and Find Full Text PDF