Our understanding of size-specific sea turtle behavior has lagged due to methodological limitations. However, stereo-video cameras (SVC) are an in-water approach that can link body-size and allow for relatively undisturbed behavioral observations. In this study, we conducted SVC dive surveys at local artificial reefs, piers, and jetties in the northern Gulf of Mexico (nGOM) from May 2019 to August 2021.
View Article and Find Full Text PDFPoint 1: Stereo-video camera systems (SVCSs) are a promising tool to remotely measure body size of wild animals without the need for animal handling. Here, we assessed the accuracy of SVCSs for measuring straight carapace length (SCL) of sea turtles. Point 2: To achieve this, we hand captured and measured 63 juvenile, subadult, and adult sea turtles across three species: greens, ( = 52); loggerheads, ( = 8); and Kemp's ridley, ( = 3) in the waters off Eleuthera, The Bahamas and Crystal River, Florida, USA, between May and November 2019.
View Article and Find Full Text PDFPopulation monitoring must be accurate and reliable to correctly classify population status. For sea turtles, nesting beach surveys are often the only population-level surveys that are accessible. However, process and observation errors, compounded by delayed maturity, obscure the relationship between trends on the nesting beach and the population.
View Article and Find Full Text PDFWhile there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55-183 m depth) and slope habitats (184-1280 m depth) off the US West Coast (47°20'N-32°40'N).
View Article and Find Full Text PDFWith the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems.
View Article and Find Full Text PDF