Publications by authors named "Susan E Ivie"

Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified.

View Article and Find Full Text PDF

Recent studies demonstrated that a variety of bacterial pore-forming toxins induce cell death through a process of programmed necrosis characterized by the rapid depletion of cellular ATP. However, events leading to the necrosis and depletion of ATP are not thoroughly understood. We demonstrate that ATP-depletion induced by two pore-forming toxins, the Clostridium perfringens epsilon-toxin and the Aeromonas hydrophila aerolysin toxin, is associated with decreased mitochondrial membrane potential and opening of the mitochondrial permeability transition pore.

View Article and Find Full Text PDF

Helicobacter pylori is a Gram-negative bacterium that colonizes the human stomach and contributes to the development of peptic ulcer disease and gastric cancer. The secreted pore-forming toxin VacA is one of the major virulence factors of H. pylori.

View Article and Find Full Text PDF

The Clostridium perfringens ε-toxin is an extremely potent toxin associated with lethal toxemias in domesticated ruminants and may be toxic to humans. Intoxication results in fluid accumulation in various tissues, most notably in the brain and kidneys. Previous studies suggest that the toxin is a pore-forming toxin, leading to dysregulated ion homeostasis and ultimately cell death.

View Article and Find Full Text PDF

Background: Helicobacter pylori is a gram-negative bacterium that colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. VacA, a toxin secreted by H. pylori, is comprised of two domains, designated p33 and p55.

View Article and Find Full Text PDF

Helicobacter pylori VacA is a secreted pore-forming toxin that is comprised of two domains, designated p33 and p55. The p55 domain has an important role in the binding of VacA to eukaryotic cell surfaces. A total of 111 residues at the amino terminus of p55 (residues 312 to 422) are essential for the intracellular activity of VacA, which suggests that this region may constitute a subdomain with an activity distinct from cell binding.

View Article and Find Full Text PDF

T cell costimulation via OX40 is known to increase CD4+ T cell expansion and effector function and enhances the development of T cell memory. OX40 costimulation can also prevent, and even reverse, CD4+ T cell anergy. However, the role of OX40 in CD8+ T cell function is less well defined, particularly in the setting of immune tolerance.

View Article and Find Full Text PDF

Helicobacter pylori secretes an 88-kDa vacuolating cytotoxin (VacA) that may contribute to the pathogenesis of peptic ulcer disease and gastric cancer. VacA cytotoxic activity requires assembly of VacA monomers into oligomeric structures, formation of anion-selective membrane channels, and entry of VacA into host cells. In this study, we analyzed the functional properties of recombinant VacA fragments corresponding to two putative VacA domains (designated p33 and p55).

View Article and Find Full Text PDF

Inhibition of angiogenesis has emerged as a key focus for the treatment of cancer, necessitating a better understanding of the downstream molecular targets of angiogenesis inhibitors. Endostatin, thrombospondin-1, fumagillin, and its synthetic derivative, TNP-470, are potent inhibitors of endothelial cell proliferation and migration in culture and of angiogenesis in vivo. To identify targets that mediate the effects of these inhibitors, we compared two-dimensional gel electrophoresis patterns from lysates of treated and untreated human endothelial cells.

View Article and Find Full Text PDF

HER-2/neu is overexpressed in several cancers including 30% of breast carcinomas, and correlates with a poor outcome. HER-2/neu-transgenic (neu-N) mice that overexpress the non-transforming rat neu develop spontaneous mammary carcinomas and demonstrate immunotolerance to the neu protein similar to that observed in patients with neu-expressing cancers. In neu-N mice, neu-targeted vaccination induces weak T cell and negligible Ab responses sufficient to delay but not eradicate transplanted neu-expressing tumor.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnvbch00rh21ntof4oa9mjoor2tu59mhc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once