Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits.
View Article and Find Full Text PDFDisinfection byproducts (DBPs) are ubiquitous contaminants present in nearly all drinking water and are associated with adverse health effects in human epidemiologic studies. The most toxic DBPs are unregulated and often occur at concentrations well below regulated DBPs; thus, quantification at low parts-per-trillion (ng/L) levels is critical in assessing exposure. We developed a new liquid-liquid extraction-gas chromatography-tandem mass spectrometry (LLE-GC-MS/MS) method with the first analysis by tandem gas chromatography-mass spectrometry of 23 priority unregulated DBPs including 13 haloacetamides, 3 haloacetic acids, 2 haloacetonitriles, 1 haloacetaldehyde, 2 haloketones, and 2 halonitromethanes.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are environmental contaminants of concern due to their long persistence in the environment, toxicity, and widespread presence in humans and wildlife. Knowledge regarding the extent of PFAS contamination in the environment is limited due to the need for analytical methods that can reliably quantify all PFAS, since traditional target methods using liquid chromatography (LC)-mass spectrometry (MS) fail to capture many. For a more comprehensive analysis, a total organic fluorine (TOF) method can be used as a screening tool.
View Article and Find Full Text PDFDisinfection byproducts (DBPs) are ubiquitous environmental contaminants, which are present in virtually all drinking water and linked to detrimental health effects. Iodinated-DBPs are more cytotoxic and genotoxic than chloro- and bromo-DBPs and are formed during disinfection of iodide-containing source water. Liquid-liquid extraction (LLE) paired with gas chromatography (GC)-mass spectrometry (MS) has been the method of choice in the study of low molecular weight iodinated-DBPs; however, this method is laborious and time-consuming and struggles with complex matrices.
View Article and Find Full Text PDFWith increasing water scarcity, many utilities are considering the potable reuse of wastewater as a source of drinking water. However, not all chemicals are removed in conventional wastewater treatment, and disinfection byproducts (DBPs) can form from these contaminants when disinfectants are applied during or after reuse treatment, especially if applied upstream of advanced treatment processes to control biofouling. We investigated the chlorination of seven priority emerging contaminants (17β-estradiol, estrone, 17α-ethinylestradiol, bisphenol A (BPA), diclofenac, -nonylphenol, and triclosan) in ultrapure water, and we also investigated the impact of chlorination on real samples from different treatment stages of an advanced reuse plant to evaluate the role of chlorination on the associated cytotoxicity and estrogenicity.
View Article and Find Full Text PDFWith the increase of algal blooms worldwide, drinking water resources are threatened by the release of various algal toxins, which can be hepatotoxic, cytotoxic, or neurotoxic. Because of their ubiquitous occurrence in global waters and incomplete removal in conventional drinking water treatment, oxidation/disinfection processes have become promising alternative treatment options to destroy both the structures and toxicity of algal toxins. This Review first summarizes the occurrence and regulation of algal toxins in source water and drinking water.
View Article and Find Full Text PDFAs disinfection byproducts (DBPs) are ubiquitous sources of chemical exposure in disinfected drinking water, identifying unknown DBPs, especially unknown drivers of toxicity, is one of the major challenges in the safe supply of drinking water. While >700 low-molecular-weight DBPs have been identified, the molecular composition of high-molecular-weight DBPs remains poorly understood. Moreover, due to the absence of chemical standards for most DBPs, it is difficult to assess toxicity contributions for new DBPs identified.
View Article and Find Full Text PDFDue to their elevated concentrations in drinking water, compared to other emerging environmental contaminants, disinfection byproducts (DBPs) have become a global concern. To address this, we have created a simple and sensitive method for simultaneously measuring 9 classes of DBPs. Haloacetic acids (HAAs) and iodo-acetic acids (IAAs) are determined using silylation derivatization, replacing diazomethane or acidic methanol derivatization with a more environmentally friendly and simpler treatment process that also offers greater sensitivity.
View Article and Find Full Text PDFOil and gas production generates large amounts of brine wastewater called "produced water" with various geogenic and synthetic contaminants. These brines are generally used in hydraulic fracturing operations to stimulate production. They are characterized by elevated halide levels, particularly geogenic bromide and iodide.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are high-profile environmental contaminants, many having long persistence in the environment and widespread presence in humans and wildlife. Following phase-out of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in North America and restrictions in Europe, PFAS replacements are now widely found in the environment. While liquid chromatography (LC)-mass spectrometry (MS) is typically used for measurement, much of the PFAS is missed.
View Article and Find Full Text PDFHarmful algal (cyanobacterial) blooms (HABs) are increasing throughout the world. HABs can be a direct source of toxins in freshwater sources, and associated algal organic matter (AOM) can act as precursors for the formation of disinfection by-products (DBPs) in drinking water. This study investigated the impacts of algae on DBP formation using treatment with chloramine, which has become a popular disinfectant in the U.
View Article and Find Full Text PDFIodized table salt provides iodide that is essential for health. However, during cooking, we found that chloramine residuals in tap water can react with iodide in table salt and organic matter in pasta to form iodinated disinfection byproducts (I-DBPs). While naturally occurring iodide in source waters is known to react with chloramine and dissolved organic carbon (e.
View Article and Find Full Text PDFBackground: Trihalomethanes (THM), a major class of disinfection by-products, are widespread and are associated with adverse health effects. We conducted a global evaluation of current THM regulations and concentrations in drinking water.
Methods: We included 120 countries (∼7000 million inhabitants in 2016), representing 94% of the world population.
Although >700 disinfection by-products (DBPs) have been identified to date, most DBPs in drinking water are still unknown. Identifying unknown DBPs is an important step for improving drinking water quality because known DBPs do not fully account for the adverse health effects noted in epidemiologic studies. Using gas chromatography high-resolution mass spectrometry, six chloro- and bromo-halocyclopentadienes (HCPDs) were identified in chlorinated and chloraminated drinking water non-target analysis; five HCPDs are reported for the first time as new alicyclic DBPs.
View Article and Find Full Text PDFMany drinking water treatment plants in the U.S. have switched from chlorination to chloramination to lower levels of regulated trihalomethane (THM) and haloacetic acid (HAA) disinfection byproducts (DBPs) in drinking water and meet the current regulations.
View Article and Find Full Text PDFHalogenated disinfection byproducts (DBPs) are an unintended consequence of drinking water disinfection, and can have significant toxicity. XAD resins are commonly used to extract and enrich trace levels of DBPs for comprehensive, nontarget identification of DBPs and also for in vitro toxicity studies. However, XAD resin recoveries for complete classes of halogenated DBPs have not been evaluated, particularly for low, environmentally relevant levels (ng/L to low µg/L).
View Article and Find Full Text PDF