Publications by authors named "Susan C Roberts"

Plant cell culture biomanufacturing is rapidly becoming an effective strategy for production of high-value plant natural products, such as therapeutic proteins and small molecules, vaccine adjuvants, and nutraceuticals. Many of these plant natural products are synthesized from diverse molecular building blocks sourced from different metabolic pathways. Even so, engineering approaches for increasing plant natural product biosynthesis have typically focused on the core biosynthetic pathway rather than the supporting pathways.

View Article and Find Full Text PDF

Plant cell cultures derived from are used to produce valuable metabolites like paclitaxel, a chemotherapeutic drug. Methyl jasmonate elicitation enhances paclitaxel accumulation, but also inhibits culture growth and increases phenylpropanoid biosynthesis, two side effects that detract from taxane accumulation. To understand the connection between all of these processes, a systems approach is applied to investigate cell-wide metabolism in .

View Article and Find Full Text PDF

Cellular aggregation in plant suspension cultures directly affects the accumulation of high value products, such as paclitaxel from Taxus. Through application of mechanical shear by repeated, manual pipetting through a 10 ml pipet with a 1.6 mm aperture, the mean aggregate size of a Taxus culture can be reduced without affecting culture growth.

View Article and Find Full Text PDF

Taxus cell suspension culture is a sustainable technology for the industrial production of paclitaxel (Taxol®), a highly modified diterpene anti-cancer agent. The methyl jasmonate (MJ)-mediated paclitaxel biosynthetic pathway is not fully characterized, making metabolic engineering efforts difficult. Here, promoters of seven genes (TASY, T5αH, DBAT, DBBT, PAM, BAPT, and DBTNBT), encoding enzymes of the paclitaxel biosynthetic pathway were isolated and used to drive MJ-inducible expression of a GUS reporter construct in transiently transformed Taxus cells, showing that elicitation of paclitaxel production by MJ is regulated at least in part at the level of transcription.

View Article and Find Full Text PDF

To establish plant culture systems for product synthesis, a multi-scale engineering approach is necessary. At the intracellular level, the influx of 'omics' data has necessitated development of new methods to properly annotate and establish useful metabolic models that can be applied to elucidate unknown steps in specialized metabolite biosynthesis, define effective metabolic engineering strategies and increase enzyme diversity available for synthetic biology platforms. On an intercellular level, the presence of aggregates in culture leads to distinct metabolic sub-populations.

View Article and Find Full Text PDF

Methyl jasmonate elicitation of Taxus cultures enhances paclitaxel accumulation, but represses growth by inhibition of cell cycle progression. Growth repression is evident both at the culture level and transcriptional level. Methyl jasmonate (MeJA) elicitation is an effective strategy to induce and enhance synthesis of the anticancer agent paclitaxel (Taxol(®)) in Taxus cell suspension cultures; however, concurrent decreases in growth are often observed, which is problematic for large-scale bioprocessing.

View Article and Find Full Text PDF

Historically, plants are a vital source of nutrients and pharmaceuticals. Recent advances in metabolic engineering have made it possible to not only increase the concentration of desired compounds, but also introduce novel biosynthetic pathways to a variety of species, allowing for enhanced nutritional or commercial value. To improve metabolic engineering capabilities, new transformation techniques have been developed to allow for gene specific silencing strategies or stacking of multiple genes within the same region of the chromosome.

View Article and Find Full Text PDF

Terminal, or postprocessing, sterilization of composite biomaterials is crucial for their use in wound healing and tissue-engineered devices. Recent research has focused on optimizing traditional biomaterial formulations to create better products for commercial and academic use which incorporate hydrophobic compounds or secondary gel networks. To use a hydrogel in a clinical setting, terminal sterilization is necessary to ensure patient safety.

View Article and Find Full Text PDF

Plant cell cultures provide a renewable source for synthesis and supply of commercially valuable plant-derived products, particularly for secondary metabolites. However, instability in product yields over multiple passages has hampered the efficient and sustainable use of this technology. Paclitaxel accumulation in Taxus cell suspension culture was quantified over multiple passages and correlated to mean aggregate size, extracellular sugar level, ploidy, and cell cycle distribution.

View Article and Find Full Text PDF

The transport of paclitaxel in Taxus canadensis suspension cultures was studied with a fluorescence analogue of paclitaxel (Flutax-2(®)) in combination with flow cytometry detection. Experiments were carried out using both isolated protoplasts and aggregated suspension cell cultures. Flutax-2(®) was shown to be greater than 90% stable in Taxus suspension cultures over the required incubation time (24 hours).

View Article and Find Full Text PDF

Perfluorocarbons (PFCs) are used in biomaterial formulations to increase oxygen (O(2) ) tension and create a homogeneous O(2) environment in three-dimensional tissue constructs. It is unclear how PFCs affect mechanical and transport properties of the scaffold, which are critical for robustness, intracellular signaling, protein transport, and overall device efficacy. In this study, we investigate composite alginate hydrogels containing a perfluorooctyl bromide (PFOB) emulsion stabilized with Pluronic(®) F68 (F68).

View Article and Find Full Text PDF

A major challenge in the production of metabolites by plant cells is the separation and purification of a desired product from a number of impurities. An important application of plant cell culture is the biosynthesis of the anticancer agent paclitaxel. Liquid-liquid extraction plays a critical role in the recovery of paclitaxel and other valuable plant-derived products from culture broth.

View Article and Find Full Text PDF

Background: Taxol(®) (paclitaxel) promotes microtubule assembly and stabilization and therefore is a potent chemotherapeutic agent against wide range of cancers. Methyl jasmonate (MJ) elicited Taxus cell cultures provide a sustainable option to meet the growing market demand for paclitaxel. Despite its increasing pharmaceutical importance, the molecular genetics of paclitaxel biosynthesis is not fully elucidated.

View Article and Find Full Text PDF

Variability in product accumulation is one of the major obstacles limiting the widespread commercialization of plant cell culture technology to supply natural product pharmaceuticals. Despite extensive process engineering efforts, which have led to increased yields, plant cells exhibit variability in productivity that is poorly understood. Elicitation of Taxus cultures with methyl jasmonate (MeJA) induces paclitaxel accumulation, but to varying extents in different cultures.

View Article and Find Full Text PDF

Plant cell culture systems were initially explored for use in commercial synthesis of several high-value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability.

View Article and Find Full Text PDF

The nature of plant cells to grow as multicellular aggregates in suspension culture has profound effects on bioprocess performance. Recent advances in the measurement of plant cell aggregate size allow for routine process monitoring of this property. We have exploited this capability to develop a conceptual model to describe changes in the aggregate size distribution that are observed over the course of a Taxus cell suspension batch culture.

View Article and Find Full Text PDF

Obstructed transport of biological molecules can result in improper release of pharmaceuticals or biologics from biomedical devices. Recent studies have shown that nonionic surfactants, such as Pluronic® F68 (F68), positively alter biomaterial properties such as mesh size and microcapsule diameter. To further understand the effect of F68 (incorporated at concentrations well above the critical micelle concentration (CMC)) in traditional biomaterials, the transport properties of BSA and riboflavin were investigated in F68-alginate composite hydrogels, formed by both internal and external cross-linking with divalent cations.

View Article and Find Full Text PDF

Plant cell aggregates have long been implicated in affecting cellular metabolism in suspension culture, yet the rigorous characterization of aggregate size as a process variable and its effect on bioprocess performance has not been demonstrated. Aggregate fractionation and analysis of biomass-associated product is commonly used to assess the effect of aggregation, but we establish that this method is flawed under certain conditions and does not necessarily agree with comprehensive studies of total culture performance. Leveraging recent advances to routinely measure aggregate size distributions, we developed a simple method to manipulate aggregate size and evaluate its effect on the culture as a whole, and found that Taxus suspension cultures with smaller aggregates produced significantly more paclitaxel than cultures with larger aggregates in two cell lines over a range of aggregate sizes, and where biomass accumulation was equivalent before elicitation with methyl jasmonate.

View Article and Find Full Text PDF

Flow-cytometric characterization of plant cell culture growth and metabolism at the single-cell level is a method superior to traditional culture average measurements for collecting population information. Investigation of culture heterogeneity and production variability by obtaining information about different culture subpopulations is crucial for optimizing bio-processes for enhanced productivity. Obtaining high yields of intact and viable single cells from aggregated plant cell cultures is an enabling criterion for their analysis and isolation using high-throughput flow cytometric methods.

View Article and Find Full Text PDF

Plant cell cultures provide an important method for production and supply of a variety of natural products, where conditions can be easily controlled, manipulated, and optimized. Development and optimization of plant cell culture processes require both bioprocess engineering and metabolic engineering approaches. Cultures are generally highly heterogeneous, with significant variability amongst cells in terms of growth, metabolism, and productivity of key metabolites.

View Article and Find Full Text PDF

Plant cells grow as aggregates in suspension culture, but little is known about the dynamics of aggregation, and no routine methodology exists to measure aggregate size. In this study, we evaluate several different methods to characterize aggregate size in Taxus suspension cultures, in which aggregate diameters range from 50 to 2,000 microm, including filtration and image analysis, and develop a novel method using a specially equipped Coulter counter system. We demonstrate the suitability of this technology to measure plant cell culture aggregates, and show that it can be reliably used to measure total biomass accumulation compared to standard methods such as dry weight.

View Article and Find Full Text PDF

The chemical diversity of plant-derived natural products allows them to function in a multitude of ways including flavor enhancers, agricultural chemicals, and importantly, human medicinals. Supply of pharmaceutically active natural products is often a challenge due to the slow growing nature of some species, low yields found in nature, and unpredictable variability in accumulation. Several production options are available including natural harvestation, total chemical synthesis, semisynthesis from isolated precursors, and expression of plant pathways in microbial systems.

View Article and Find Full Text PDF

Cell encapsulation provides cells a three-dimensional structure to mimic physiological conditions and improve cell signaling, proliferation, and tissue organization as compared to monolayer culture. Encapsulation devices often encounter poor mass transport, especially for oxygen, where critical dissolved levels must be met to ensure both cell survival and functionality. To enhance oxygen transport, we utilized perfluorocarbon (PFC) oxygen vectors, specifically perfluorooctyl bromide (PFOB) immobilized in an alginate matrix.

View Article and Find Full Text PDF