Publications by authors named "Susan C Menzies"

IgG immune complexes (ICs) promote autoimmunity through binding fragment crystallizable (Fc) γ-receptors (FcγRs). Of these, the highly prevalent FcγRIIa (CD32a) histidine (H)-131 variant (CD32aH) is strongly linked to human autoimmune diseases through unclear mechanisms. We show that, relative to the CD32a arginine (R)-131 (CD32aR) variant, CD32aH more avidly bound human (h) IgG1 IC and formed a ternary complex with the neonatal Fc receptor (FcRn) under acidic conditions.

View Article and Find Full Text PDF

Crohn's disease is an immune-mediated disease characterized by inflammation along the gastrointestinal tract. Fibrosis requiring surgery occurs in one-third of people with Crohn's disease but there are no treatments for intestinal fibrosis. Mice deficient in the SH2 domain-containing inositolpolyphosphate 5'-phosphatase (SHIP), a negative regulator of phosphatidylinositol 3-kinase (PI3K) develop spontaneous Crohn's disease-like intestinal inflammation and arginase I (argI)-dependent fibrosis.

View Article and Find Full Text PDF

This study tested the hypothesis that mucosa associated lymphoid tissue 1 (Malt1) deficiency causes osteoporosis in mice by increasing osteoclastogenesis and osteoclast activity. A patient with combined immunodeficiency (CID) caused by MALT1 deficiency had low bone mineral density resulting in multiple low impact fractures that was corrected by hematopoietic stem cell transplant (HSCT). We have reported that Malt1 deficient Mϕs, another myeloid cell type, are hyper-responsive to inflammatory stimuli.

View Article and Find Full Text PDF

Intravenous immunoglobulin (IVIg) is used to treat immune-mediated diseases but its mechanism of action is poorly understood. We have reported that co-treatment with IVIg and lipopolysaccharide activates macrophages to produce large amounts of anti-inflammatory IL-10 in vitro. Thus, we asked whether IVIg-treated macrophages or IVIg could reduce intestinal inflammation in mice during dextran sulfate sodium (DSS)-induced colitis by inducing macrophage IL-10 production in vivo.

View Article and Find Full Text PDF

Inflammatory bowel disease, encompassing both ulcerative colitis and Crohn's disease, is characterized by chronic, relapsing-remitting gastrointestinal inflammation of unknown etiology. SHIP deficient mice develop fully penetrant, spontaneous ileitis at 6 weeks of age, and thus offer a tractable model of Crohn's disease-like inflammation. Since disruptions to the microbiome are implicated in the pathogenesis of Crohn's disease, we conducted a 16S rRNA gene survey of the ileum, cecum, colon, and stool contents of SHIP and SHIP mice.

View Article and Find Full Text PDF

Intravenous Immunoglobulin (IVIg) is used to treat autoimmune or inflammatory diseases, but its mechanism of action is not completely understood. We asked whether IVIg can induce interleukin-10 (IL-10) and reduce pro-inflammatory cytokine production in human monocytes, and whether this response is reduced in monocytes from people with an Fcγ receptor IIA (FcγRIIA) gene variant, which is associated with increased risk of inflammatory diseases and poor response to antibody-based biological therapy. IVIg increased IL-10 production and reduced pro-inflammatory cytokine production in response to bacterial lipopolysaccharide (LPS), which required FcγRI and FcγRIIB and activation of MAPKs, extracellular signal-regulated kinase 1/2 (ERK1/2), and p38.

View Article and Find Full Text PDF

This study tested the hypothesis that Malt1 deficiency in macrophages contributes to dextran sodium sulfate (DSS)-induced intestinal inflammation in Malt1-deficient mice. In people, combined immunodeficiency caused by a homozygous mutation in the MALT1 gene is associated with increased susceptibility to bacterial infections and chronic inflammation, including severe inflammation along the gastrointestinal tract. The consequences of Malt1 deficiency have largely been attributed to its role in lymphocytes, but Malt1 is also expressed in macrophages, where it is activated downstream of TLR4 and dectin-1.

View Article and Find Full Text PDF

Background & Aims: Crohn's disease (CD) is associated with a dysregulated immune response to commensal micro-organisms in the intestine. Mice deficient in inositol polyphosphate 5'-phosphatase D (INPP5D, also known as SHIP) develop intestinal inflammation resembling that of patients with CD. SHIP is a negative regulator of PI3Kp110α activity.

View Article and Find Full Text PDF

Intravenous Ig is used to treat autoimmune or autoinflammatory disorders, but the mechanism by which it exerts its immunosuppressive activity is not understood completely. To examine the impact of intravenous Ig on macrophages, we compared cytokine production by LPS-activated macrophages in the presence and absence of intravenous Ig. Intravenous Ig treatment induced robust production of IL-10 in response to LPS, relative to LPS stimulation alone, and reduced production of proinflammatory cytokines.

View Article and Find Full Text PDF

Alternatively activated or M2 macrophages have been reported to protect mice from intestinal inflammation, but the mechanism of protection has not been elucidated. In this study, we demonstrate that mice deficient in the p110δ catalytic subunit activity of class I phosphatidylinositol 3-kinase (PI3Kp110δ) have increased clinical disease activity and histological damage during dextran sodium sulfate (DSS) induced colitis. Increased disease severity in PI3Kp110δ-deficient mice is dependent on professional phagocytes and correlates with reduced numbers of arginase I+ M2 macrophages in the colon and increased production of inflammatory nitric oxide.

View Article and Find Full Text PDF