The strength of the rat as a model organism lies in its utility in pharmacology, biochemistry and physiology research. Data resulting from such studies is difficult to represent in databases and the creation of user-friendly data mining tools has proved difficult. The Rat Genome Database has developed a comprehensive ontology-based data structure and annotation system to integrate physiological data along with environmental and experimental factors, as well as genetic and genomic information.
View Article and Find Full Text PDFThe laboratory rat, Rattus norvegicus, is an important model of human health and disease, and experimental findings in the rat have direct relevance to human-based research. The Rat Genome Database (RGD, http://rgd.mcw.
View Article and Find Full Text PDFThe Rat Genome Database (RGD, http://rgd.mcw.edu) is one of the core resources for rat genomics and recent developments have focused on providing support for disease-based research using the rat model.
View Article and Find Full Text PDFPhysiol Genomics
October 2005
The broad goal of physiological genomics research is to link genes to their functions using appropriate experimental and computational techniques. Modern genomics experiments enable the generation of vast quantities of data, and interpretation of this data requires the integration of information derived from many diverse sources. Computational biology and bioinformatics offer the ability to manage and channel this information torrent.
View Article and Find Full Text PDFThe Rat Genome Database (RGD) (http://rgd.mcw.edu) aims to meet the needs of its community by providing genetic and genomic infrastructure while also annotating the strengths of rat research: biochemistry, nutrition, pharmacology and physiology.
View Article and Find Full Text PDFThe laboratory rat is a major model organism for systems biology. To complement the cornucopia of physiological and pharmacological data generated in the rat, a large genomic toolset has been developed, culminating in the release of the rat draft genome sequence. The rat draft sequence used a variety of assembly packages, as well as data from the Radiation Hybrid (RH) map of the rat as part of their validation.
View Article and Find Full Text PDFIntegration of the large variety of genome maps from several organisms provides the mechanism by which physiological knowledge obtained in model systems such as the rat can be projected onto the human genome to further the research on human disease. The release of the rat genome sequence provides new information for studies using the rat model and is a key reference against which existing and new rat physiological results can be aligned. Previously, we described comparative maps of the rat, mouse, and human based on EST sequence comparisons combined with radiation hybrid maps.
View Article and Find Full Text PDFThe laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome.
View Article and Find Full Text PDF