Dry powder inhalers (DPIs) are drug-device combination products where the complexity of the formulation, its interaction with the device, and input from users play important roles in the drug delivery. As the landscape of DPI products advances with new powder formulations and novel device designs, understanding how these advancements impact performance can aid in developing generics that are therapeutically equivalent to the reference listed drug (RLD) products. This review details the current understanding of the formulation and device related principles driving DPI performance, past and present research efforts to characterize these performance factors, and the implications that advances in formulation and device design may present for evaluating bioequivalence (BE) for generic development.
View Article and Find Full Text PDFRegulatory science for generic dry powder inhalers (DPIs) in the United States (U.S.) has evolved over the last decade.
View Article and Find Full Text PDFRegulatory science for generic dry powder inhalation products worldwide has evolved over the last decade. The revised draft guidance Metered Dose Inhaler (MDI) and Dry Powder Inhaler (DPI) Products - Quality Considerations [1] (Revision 1, April 2018) that FDA issued summarizes product considerations and potential critical quality attributes (CQAs). This guidance emphasizes the need to apply the principles of quality by design (QbD) and elements of pharmaceutical development discussed in the International Conference for Harmonisation of (ICH) guidelines.
View Article and Find Full Text PDFThis study aimed to develop and characterize a spray-dried powder aerosol formulation of a commercially available surfactant formulation, Survanta® intratracheal suspension, using the excipient enhanced growth (EEG) approach. Survanta EEG powders were prepared by spray drying of the feed dispersions containing Survanta® (beractant) intratracheal suspension, hygroscopic excipients (mannitol and sodium chloride), and a dispersion enhancer (l-leucine or trileucine) in 5 or 20% v/v ethanol in water using the Buchi Nano Spray Dryer B-90 HP. Powders were characterized for primary particle size, morphology, phospholipid content, moisture content, thermal properties, moisture sorption, and surface activity.
View Article and Find Full Text PDFEfficient delivery of dry powder aerosols dispersed with low volumes of air is challenging. This study aims to develop an efficient dry powder inhaler (DPI) capable of delivering spray-dried Survanta-EEG powders (3-10 mg) with a low volume (3 mL) of dispersion air. A series of iterative design modifications were made to a base low air volume actuated DPI.
View Article and Find Full Text PDFJ Aerosol Med Pulm Drug Deliv
December 2020
In neonatal respiratory distress syndrome, breathing support and surfactant therapy are commonly used to enable the alveoli to expand. Surfactants are typically delivered through liquid instillation. However, liquid instillation does not specifically target the small airways.
View Article and Find Full Text PDFComputational fluid dynamics (CFD) provides a powerful tool for developing new high-efficiency aerosol delivery strategies, such as nose-to-lung (N2L) aerosol administration to infants and children using correctly sized aerosols. The objective of this study was to establish numerically efficient CFD solution methods and guidelines for simulating N2L aerosol administration to an infant based on comparisons with concurrent experiments. N2L administration of a micrometer-sized aerosol (mass median aerodynamic diameter [MMAD] = 1.
View Article and Find Full Text PDF