The aryl-substituted bis(imino)pyridine cobalt methyl complex, ((Mes)PDI)CoCH3 ((Mes)PDI = 2,6-(2,4,6-Me3C6H2-N═CMe)2C5H3N), promotes the catalytic dehydrogenative silylation of linear α-olefins to selectively form the corresponding allylsilanes with commercially relevant tertiary silanes such as (Me3SiO)2MeSiH and (EtO)3SiH. Dehydrogenative silylation of internal olefins such as cis- and trans-4-octene also exclusively produces the allylsilane with the silicon located at the terminus of the hydrocarbon chain, resulting in a highly selective base-metal-catalyzed method for the remote functionalization of C-H bonds with retention of unsaturation. The cobalt-catalyzed reactions also enable inexpensive α-olefins to serve as functional equivalents of the more valuable α, ω-dienes and offer a unique method for the cross-linking of silicone fluids with well-defined carbon spacers.
View Article and Find Full Text PDFAlkene hydrosilylation, the addition of a silicon hydride (Si-H) across a carbon-carbon double bond, is one of the largest-scale industrial applications of homogeneous catalysis and is used in the commercial production of numerous consumer goods. For decades, precious metals, principally compounds of platinum and rhodium, have been used as catalysts for this reaction class. Despite their widespread application, limitations such as high and volatile catalyst costs and competing side reactions have persisted.
View Article and Find Full Text PDF