The 28-day repeat-dose oral and genetic toxicity of eicosapentaenoic acid triglyceride oil (EPA oil) produced from genetically modified Yarrowia lipolytica yeast were assessed. Groups of rats received 0 (olive oil), 940, 1880, or 2820 mg EPA oil/kg/day, or fish oil (sardine/anchovy source) by oral gavage. Lower total serum cholesterol was seen in all EPA and fish oil groups.
View Article and Find Full Text PDFThe safety of eicosapentaenoic acid (EPA) oil produced from genetically modified Yarrowia lipolytica yeast was evaluated following 90 days of exposure. Groups of rats received 0 (olive oil), 98, 488, or 976 mg EPA/kg/day, or GRAS fish oil or deionized water by oral gavage. Rats were evaluated for in-life, neurobehavioral, anatomic and clinical pathology parameters.
View Article and Find Full Text PDFDAS-Ø15Ø7-1xDAS-59122-7 (1507x59122) is a genetically modified (GM) maize hybrid that was produced by crossing of two GM maize inbreds; DAS-Ø15Ø7-1 and DAS-59122-7. This hybrid cross expresses four transgenic proteins: Cry1F and PAT (from DAS-Ø15Ø7-1) and Cry34Ab1/Cry35Ab1 and PAT (from DAS-59122-7) that confer resistance to lepidopteran and coleopteran pests and tolerance to the herbicidal active ingredient glufosinate-ammonium. The current subchronic feeding study was conducted in Sprague-Dawley rats to evaluate the potential health effects of long-term consumption of a rodent diet containing 1507x59122 maize grain compared with a diet containing maize grain from its near-isogenic control (091).
View Article and Find Full Text PDFMaize line 1507, containing event DAS-Ø15Ø7-1 (1507), is a genetically modified (GM) maize plant that expresses the cry1F gene from Bacillus thuringiensis (Bt) sbsp. aizawai and the phosphinothricin-N-acetyltransferase (pat) gene from Streptomyces viridochromogenes throughout the plant including in the grain expression of the Cry1F protein confers in planta resistance to the European corn borer (ECB; Ostrinia nubilalis Hübner: Crambidae) and other lepidopteran pests. Expression of the PAT protein confers tolerance to the herbicidal active ingredient glufosinate-ammonium.
View Article and Find Full Text PDF