Publications by authors named "Susan A M Mulders"

Clinical efficacy of antisense oligonucleotides (AONs) for the treatment of neuromuscular disorders depends on efficient cellular uptake and proper intracellular routing to the target. Selection of AONs with highest in vitro efficiencies is usually based on chemical or physical methods for forced cellular delivery. Since these methods largely bypass existing natural mechanisms for membrane passage and intracellular trafficking, spontaneous uptake and distribution of AONs in cells are still poorly understood.

View Article and Find Full Text PDF

Myotonic Dystrophy type 1 (DM1) is a multisystemic disease caused by toxic RNA from a DMPK gene carrying an expanded (CTG•CAG)n repeat. Promising strategies for treatment of DM1 patients are currently being tested. These include antisense oligonucleotides and drugs for elimination of expanded RNA or prevention of aberrant binding to RNP proteins.

View Article and Find Full Text PDF

To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein.

View Article and Find Full Text PDF

DMPK, the product of the mutated gene in myotonic dystrophy type 1, belongs to the subfamily of Rho-associated serine-threonine protein kinases, whose members play a role in actin-based cell morphodynamics. Not much is known about the physiological role of differentially localized individual DMPK splice isoforms. We report here that prominent stellar-shaped stress fibers are formed during early and late steps of differentiation in DMPK-deficient myoblast-myotubes upon complementation with the short cytosolic DMPK E isoform.

View Article and Find Full Text PDF

Myotonic dystrophy (DM) is a complex, dominantly inherited, multisystem disorder and the archetypal example of an RNA gain-of-function disease. Unstable expansions of (CTG*CAG)n or (CCTG*CAGG)n repeat tracts in the DMPK and ZNF9 genes cause the two known subtypes of myotonic dystrophy, DM1 and DM2, for which no cure or effective molecular treatment exists. Focus in therapeutic development is currently on toxic, expanded (C/CUG)n RNAs.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is caused by toxicity of an expanded, noncoding (CUG)n tract in DM protein kinase (DMPK) transcripts. According to current evidence the long (CUG)n segment is involved in entrapment of muscleblind (Mbnl) proteins in ribonuclear aggregates and stabilized expression of CUG binding protein 1 (CUGBP1), causing aberrant premRNA splicing and associated pathogenesis in DM1 patients. Here, we report on the use of antisense oligonucleotides (AONs) in a therapeutic strategy for reversal of RNA-gain-of-function toxicity.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by an unstable (CTG . CAG)n segment in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. It is commonly accepted that DMPK mRNA-based toxicity is the main contributor to DM1 manifestations; however, not much is known about the significance of the DMPK protein.

View Article and Find Full Text PDF

The myotonic dystrophy protein kinase polypeptide repertoire in mice and humans consists of six different splice isoforms that vary in the nature of their C-terminal tails and in the presence or absence of an internal Val-Ser-Gly-Gly-Gly motif. Here, we demonstrate that myotonic dystrophy protein kinase isoforms exist in high-molecular-weight complexes controlled by homo- and heteromultimerization. This multimerization is mediated by coiled-coil interactions in the tail-proximal domain and occurs independently of alternatively spliced protein segments or myotonic dystrophy protein kinase activity.

View Article and Find Full Text PDF