Gene-specific knowledge can enhance genetic variant classification, but may not be routinely incorporated into clinical laboratory practice. For example, FBN1 variants associated with Marfan syndrome may be variably classified depending on knowledge of FBN1-specific critical regions. In order to assess variability in classification of FBN1 variants, 674 FBN1 missense variants from 18 ClinVar submitters were compared and reanalyzed using FBN1-specific criteria and ACMG/AMP 2015 guidelines for variant interpretation.
View Article and Find Full Text PDFSignificant barriers, such as lack of professional guidelines, specialized training for interpretation of pharmacogenomics (PGx) data, and insufficient evidence to support clinical utility, prevent preemptive PGx testing from being widely clinically implemented. The current study, as a pilot project for the Right Drug, Right Dose, Right Time-Using Genomic Data to Individualize Treatment Protocol, was designed to evaluate the impact of preemptive PGx and to optimize the workflow in the clinic setting. We used an 84-gene next-generation sequencing panel that included SLCO1B1, CYP2C19, CYP2C9, and VKORC1 together with a custom-designed CYP2D6 testing cascade to genotype the 1013 subjects in laboratories approved by the Clinical Laboratory Improvement Act.
View Article and Find Full Text PDFCurrent clinical laboratory practice guidelines for next-generation sequencing (NGS) do not provide definitive guidance on confirming NGS variants. Sanger confirmation of NGS results can be inefficient, redundant, and expensive. We evaluated the accuracy of NGS-detected single-nucleotide variants (SNVs) and insertion/deletion variants (indels) and the necessity of NGS variant confirmation using four NGS target-capture gene panels covering 117 genes, 568 Kbp, and 77 patient DNA samples.
View Article and Find Full Text PDFThe diagnosis of Marfan syndrome (MFS) remains challenging despite the 2010 revision to Ghent nosology criteria, and there is a lack of published information regarding FBN1 genotype associations in patients since the update in Ghent criteria. Applying revised Ghent criteria, we reviewed consecutive proband cases (n=292) submitted for FBN1 sequencing. Testing yielded 207 pathogenic or likely pathogenic FBN1 variants, with 114/207 (55%) missense, 67/207 (32%) non-sense or frameshift, and 28/207 (13%) splicing.
View Article and Find Full Text PDFPurpose: Marfan syndrome is a systemic disorder that typically involves FBN1 mutations and cardiovascular manifestations. We investigated FBN1 genotype-phenotype correlations with aortic events (aortic dissection and prophylactic aortic surgery) in patients with Marfan syndrome.
Methods: Genotype and phenotype information from probands (n = 179) with an FBN1 pathogenic or likely pathogenic variant were assessed.
Objective: Familial hypercholesterolemia (FH) can be due to mutations in LDLR, PCSK9, and APOB. In phenotypically defined patients, a subset remains unresponsive to lipid-lowering therapies and requires low density-lipoprotein (LDL) apheresis treatment. In this pilot study, we examined the genotype/phenotype relationship in patients with dyslipidemia undergoing routine LDL apheresis.
View Article and Find Full Text PDFObjective: To assess the clinical utility of UGT1A1 genetic testing and describe the spectrum and prevalence of UGT1A1 variations identified in pediatric unconjugated hyperbilirubinemia (UCH), and to characterize specific genotype-phenotype relationships in suspected Gilbert and Crigler-Najjar syndromes.
Study Design: A retrospective study was conducted to review clinical information and UGT1A1 genotyping data from 181 pediatric patients referred for UCH. In silico analyses were performed to aid in the assessment of novel UGT1A1 variants.
Familial hypercholesterolemia (FH) is the most common form of autosomal-dominant hypercholesterolemia, and is caused by mutations in the low-density lipoprotein receptor (LDLR) gene. Heterozygous FH is characterized by elevated low-density lipoprotein (LDL) cholesterol and early-onset cardiovascular disease, whereas homozygous FH results in more severe LDL cholesterol elevation with death by 20 years of age. We present here the case of an African-American female FH patient presenting with a myocardial infarction at the age of 48, recurrent angina pectoris and numerous coronary artery stents.
View Article and Find Full Text PDFBackground: Quantification of plasma free metanephrines is usually accomplished by HPLC with electrochemical detection, but sample preparation is labor-intensive and time-consuming, run times are long, and interfering substances sometimes obscure the relevant peaks. The aim of this study was to develop a sensitive and specific LC-MS/MS method for plasma free metanephrines.
Methods: After solid-phase extraction, chromatographic separation of normetanephrine (NMN) and metanephrine (MN) was accomplished by use of a cyano analytical column.
Two new automated, highly sensitive methods for the measurement of C-reactive protein (CRP) were compared using blood samples from active and retired health care workers (116 males, 114 females). The regression equation was y=1.115x-0.
View Article and Find Full Text PDF