Publications by authors named "Susan A Bloomfield"

Female wrestling has grown exponentially over the past decade. Within the United States, 46 states now recognize female high school wrestling, and 153 colleges have programs. It is on track to become an NCAA championship-level sport in 2026.

View Article and Find Full Text PDF

Introduction: Reductions in energy availability leading to weight loss can induce loss of bone and impact important endocrine regulators of bone integrity. We sought to elucidate whether endurance exercise (EX) can mitigate bone loss observed in sedentary (SED) skeletally mature rodents subjected to graded energy deficits.

Methods: Female virgin rats (n=84, 5-mo-old; 12/group) were randomized to baseline controls and either sedentary (SED) or exercise (EX) conditions, and within each exercise status to adlib-fed (ADLIB), or moderate (MOD) or severe (SEV) energy restriction diets for 12 weeks.

View Article and Find Full Text PDF

Purpose: Obesity is thought to negatively impact bone quality and strength despite improving bone mineral density. We hypothesized that 1) continuous consumption of a high-fat, high-sugar (HFS) diet would impair bone quality and strength, and 2) a change from an HFS diet to a low-fat, low-sugar (LFS) would reverse HFS-induced impairments to bone quality and strength.

Methods: Six-week-old male C57Bl/6 mice ( n = 10/group) with access to a running wheel were randomized to an LFS diet or an HFS diet with simulated sugar-sweetened beverages (20% fructose in place of regular drinking water) for 13 wk.

View Article and Find Full Text PDF
Article Synopsis
  • Prolonged spaceflight can lead to muscle atrophy, and partial gravity similar to the Moon's surface may worsen this, especially when combined with space radiation exposure.
  • A study was conducted on mice to investigate the effects of partial weight-bearing (simulating Lunar gravity) and radiation on muscle mass and protein synthesis.
  • Results showed that partial weight-bearing decreased muscle mass but radiation exposure did not further impact muscle mass, although some changes in protein synthesis and muscle fiber types were observed.
View Article and Find Full Text PDF

Background: Long-acting, reversible contraceptives (LARC; progestin only) are an increasingly common hormonal contraceptive choice in reproductive aged women looking to suppress ovarian function and menstrual cyclicity. The overall objective was to develop and validate a rodent model of implanted etonogestrel (ENG) LARC, at body size equivalent doses to the average dose received by women during each of the first 3 years of ENG subdermal rod LARC use.

Methods: Intact, virgin, female Sprague-Dawley rats (16-wk-old) were randomized to 1 of 4 groups (n = 8/group) of ENG LARC (high-0.

View Article and Find Full Text PDF

The impact of the spaceflight environment on endogenous estrogen production in female crewmembers and the resulting impact on other adaptations, like bone loss, is an under-investigated topic. Hence, we investigated the interaction of exogenous 17- estradiol (E2) treatment and disuse to test the hypothesis that E2 treatment would mitigate disuse-induced bone loss. There were 40 virgin female Sprague-Dawley rats (5 mo old) randomized to placebo (PL; 0 ppm E2) or estrogen (E2; 10 ppm E2) treatments, delivered via custom-made rodent diets; half of each group was randomized to either weightbearing (WB) or hindlimb unloading (HU) for 39 d.

View Article and Find Full Text PDF

Chronic inflammation leads to bone loss and fragility. Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) consistently promote bone resorption. Dietary modulation of proinflammatory cytokines is an accepted therapeutic approach to treat chronic inflammation, including that induced by space-relevant radiation exposure.

View Article and Find Full Text PDF

Disuse-induced bone loss is characterized by alterations in bone turnover. Accruing evidence suggests that osteocytes respond to inflammation and express and/or release pro-inflammatory cytokines; however, it remains largely unknown whether osteocyte inflammatory proteins are influenced by disuse. The goals of this project were (1) to assess osteocyte pro-inflammatory cytokines in the unloaded hindlimb and loaded forelimb of hindlimb unloaded rats, (2) to examine the impact of exogenous irisin during hindlimb unloading (HU).

View Article and Find Full Text PDF

Chronic pediatric inflammatory bowel disease (IBD) leads to lack of bone accrual, bone loss, and increased fractures. Presently there is no cure, and many IBD treatments incur negative side effects. We previously discovered treatment with exogenous irisin resolved inflammatory changes in the colon, gut lymphatics, and bone in a mild IBD rodent model.

View Article and Find Full Text PDF

Astronauts traveling beyond low Earth orbit will be exposed to galactic cosmic radiation (GCR); understanding how high energy ionizing radiation modifies the bone response to mechanical unloading is important to assuring crew health. To investigate this, we exposed 4-mo-old female Balb/cBYJ mice to an acute space-relevant dose of 0.5 Gy Fe or sham ( = ~8/group); 4 days later, half of the mice were also subjected to a ground-based analog for 1/6 g (partial weightbearing) (G/6) for 21 days.

View Article and Find Full Text PDF

Profound bone loss occurs following spinal cord injury (SCI) resulting in a high incidence of fractures. While likely caused in part by loss of weight-bearing, there is greater bone loss following SCI when compared to that observed in other disuse animal models. Patients with SCI have a protracted inflammatory response, with elevated circulating levels of pro-inflammatory markers.

View Article and Find Full Text PDF

Energy restriction (ER) causes bone loss, but the impact of exercise during ER is less understood. In this study, we examined the impact of metabolic hormones and body composition on both total body bone mineral content (BMC) and local (proximal tibia) volumetric bone mineral density (vBMD) during short- (4 weeks) and long-term (12 weeks) ER with and without exercise in adult female rats. Our first goal was to balance energy between sedentary and exercising groups to determine the impact of exercise during ER.

View Article and Find Full Text PDF

Inflammatory bowel disease is a condition that leads to gut pathologies such as abnormal lymphatic architecture, as well as to systemic comorbidities such as bone loss. Furthermore, current therapies are limited to low efficacy and incur side effects. Dietary interventions have been explored minimally, but may provide a treatment for improving gut outcomes and comorbidities.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a chronic disease with gastrointestinal dysfunction as well as comorbidities such as inflammation-induced bone loss and impaired immune response. Current treatments for IBD all have negative, potentially severe side effects. We aimed to test whether exogenous treatment with irisin, a novel immunomodulatory adipomyokine, could ameliorate IBD-induced lymphatic and bone alterations.

View Article and Find Full Text PDF

Osteocytes are believed to be the primary mechanosensors of bone tissue, signaling to osteoblasts and osteoclasts by releasing specific proteins. Sclerostin, interleukin-6 (IL-6), and insulin-like growth factor-I (IGF-I) are osteocyte proteins that signal to osteoblasts. The primary objective of this study was to determine if osteocyte protein response to mechanical unloading is restricted to the unloaded bone using the hindlimb unloading (HU) rodent model.

View Article and Find Full Text PDF

Exposure to high-dose ionizing radiation during medical treatment exerts well-documented deleterious effects on bone health, reducing bone density and contributing to bone growth retardation in young patients and spontaneous fracture in postmenopausal women. However, the majority of human radiation exposures occur in a much lower dose range than that used in the radiation oncology clinic. Furthermore, very few studies have examined the effects of low-dose ionizing radiation on bone integrity and results have been inconsistent.

View Article and Find Full Text PDF

Bone loss is a common comorbidity of inflammatory bowel disease (IBD), leading to elevated fracture risk in these patients. Inflammatory factors associated with IBD cause increased bone resorption and decreased bone formation with multiple factors implicated as instigators of these alterations. In this project, we examined the influence of IBD on osteocyte proteins in male rats (2 months old) divided into two groups: induced gut inflammation via 2,4,6-trinitrobenzenesulfonic acid (TNBS) enema, and vehicle control.

View Article and Find Full Text PDF

The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions.

View Article and Find Full Text PDF

Astronaut intestinal health may be impacted by microgravity, radiation, and diet. The aim of this study was to characterize how high and low linear energy transfer (LET) radiation, microgravity, and elevated dietary iron affect colon microbiota (determined by 16S rDNA pyrosequencing) and colon function. Three independent experiments were conducted to achieve these goals: 1) fractionated low LET γ radiation (137Cs, 3 Gy, RAD), high Fe diet (IRON) (650 mg/kg diet), and a combination of low LET γ radiation and high Fe diet (IRON+RAD) in male Sprague-Dawley rats; 2) high LET 38Si particle exposure (0.

View Article and Find Full Text PDF

There is growing interest in the interaction between skeletal muscle and bone, particularly at the genetic and molecular levels. However, the genetic and molecular linkages between muscle and bone are achieved only within the context of the essential mechanical coupling of the tissues. This biomechanical and physiological linkage is readily evident as muscles attach to bone and induce exposure to varied mechanical stimuli via functional activity.

View Article and Find Full Text PDF

Estrogen receptor-α (ER-α) is an important mediator of the bone response to mechanical loading. We sought to determine whether restricting dietary energy intake by 40% limits the bone formation rate (BFR) response to mechanical loading (LOAD) by downregulating ER-α-expressing osteocytes, or osteoblasts, or both. Female rats (n = 48, 7 mo old) were randomized to ADLIB-SHAM and ADLIB-LOAD groups fed AIN-93M purified diet ad libitum or to ER40-SHAM and ER40-LOAD groups fed modified AIN-93M with 40% less energy (100% of all other nutrients).

View Article and Find Full Text PDF

The sympathetic nervous system (SNS) plays an important role in mediating bone remodeling. However, the exact role that beta-1 adrenergic receptors (beta1AR) have in this process has not been elucidated. We have previously demonstrated the ability of dobutamine (DOB), primarily a beta1AR agonist, to inhibit reductions in cancellous bone formation and mitigate disuse-induced loss of bone mass.

View Article and Find Full Text PDF

Spaceflight provides a unique environment for skeletal tissue causing decrements in structural and densitometric properties of bone. Previously, we used the adult hindlimb unloaded (HU) rat model to show that previous exposure to HU had minimal effects on bone structure after a second HU exposure followed by recovery. Furthermore, we found that the decrements during second HU exposure were milder than the initial HU cycle.

View Article and Find Full Text PDF

Purpose: This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses.

Methods: Sprague-Dawley rats (male, 6 months old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 wk.

View Article and Find Full Text PDF

Extended periods of inactivity cause severe bone loss and concomitant deterioration of the musculoskeletal system. Considerable research has been aimed at better understanding the mechanisms and consequences of bone loss due to unloading and the associated effects on strength and fracture risk. One factor that has not been studied extensively but is of great interest, particularly for human spaceflight, is how multiple or repeated exposures to unloading and reloading affect the skeleton.

View Article and Find Full Text PDF