Publications by authors named "Suryatin Alim Gladwin"

Cofactors, such as adenosine triphosphate, nicotinamide adenine dinucleotide, and coenzyme A, are involved in nearly 50% of enzymatic reactions and widely used in biocatalytic production of useful chemicals. Although commercial production of cofactors has been mostly dependent on extraction from microbial cells, this approach has a theoretical limitation to achieve a high-titer, high-yield production of cofactors owing to the tight regulation of cofactor biosynthesis in living cells. Besides the cofactor production, their regeneration is also a key challenge to enable continuous use of costly cofactors and improve the feasibility of enzymatic chemical manufacturing.

View Article and Find Full Text PDF

Adenosine triphosphate (ATP) is an essential cofactor for energy-dependent enzymatic reactions that occur during in vitro biochemical conversion. Recently, an enzyme cascade based on non-oxidative glycolysis, which uses starch and orthophosphate as energy and phosphate sources, respectively, for the regeneration of ATP from adenosine diphosphate, has been developed (Wei et al., ChemCatChem 2018, 10, 5597-5601).

View Article and Find Full Text PDF

Coenzyme A (CoA) is an essential cofactor present in all domains of life and is involved in numerous metabolic pathways, including fatty acid metabolism, pyruvate oxidation through the tricarboxylic acid (TCA) cycle, and the production of secondary metabolites. This characteristic makes CoA a commercially valuable compound in the pharmaceutical, cosmetic, and clinical industries. However, CoA is difficult to accumulate in living cells at a high level, since it is consumed in multiple metabolic pathways, hampering its manufacturing by typical cell cultivation and extraction approaches.

View Article and Find Full Text PDF